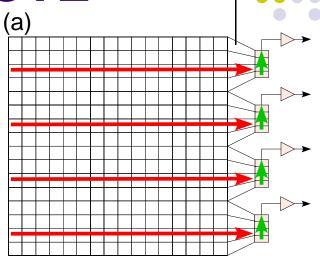
R&D status of FPCCD VTX

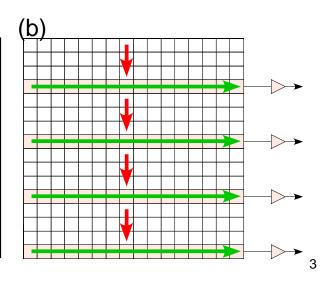
Yasuhiro Sugimoto

KEK

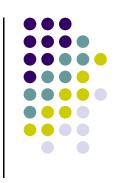
17 Nov.2008 @LCWS2008



- Accumulate hit signals for one train (2625 BX) and read out between trains (200ms) → Completely free from EMI
- Fine pixel of ~5μm (x20 more pixels than "standard" pixels) to keep low pixel occupancy
 - Spatial resolution of ~1.5μm even with digital readout
 - Excellent two-track separation capability
- Fully depleted epitaxial layer to minimize the number of hit pixels due to charge spread by diffusion
- Two layers in proximity make a doublet (super layer) to minimize the wrong-tracking probability due to multiple scattering
- Three doublets (6 CCD layers) make the detector
- Tracking capability with single layer using hit cluster shape can help background rejection
- Multi-port readout with moderate (~10MHz) speed (Very fast readout (>50MHz) not necessary)
- Simple structure → Large area
- No heat source in the image area

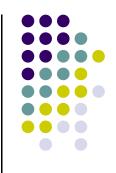

Design optimized for CTE

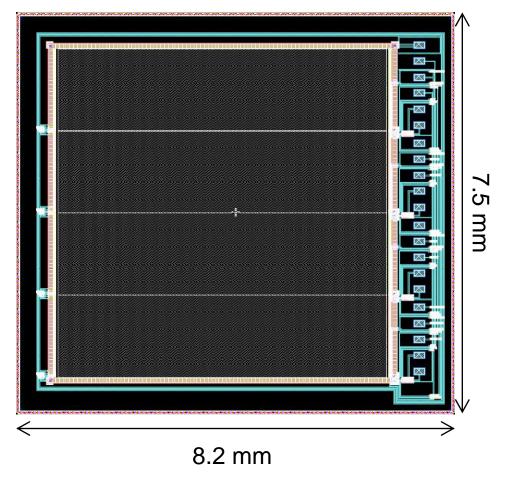
- Two options for multi-port readout
 - (a) is adopted for SLD VTX
 - (b) is more advantageous from the viewpoint of radiation tolerance (CTE: charge transfer efficiency)



Charge transfer inefficiency (CTI) due to traps caused by radiation damage becomes smaller if $1/f_{clock} << \tau_c$, where τ_c is electron capture time constant (~300ns for 0.42eV level)

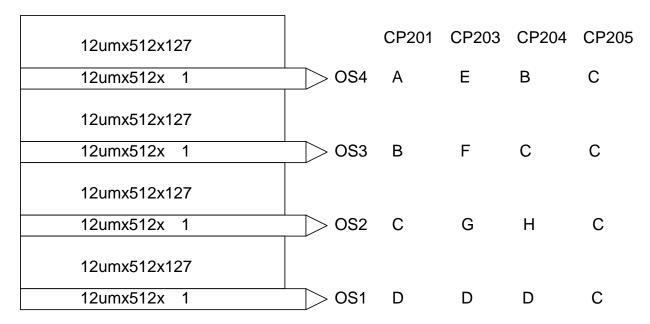
- → CTI_V>CTI_H (H-clock>10MHz, V-clock<1MHz)
- → The number of V-shift should be small





- Challenges of FPCCD
 - 1. Small pixel size ~5 μm
 - 2. Readout speed > 10 MHz
 - 3. Noise < 50 electrons (preferably <30 electrons)
 - 4. Power consumption < 10 mW/ch
 - 5. Horizontal register (same size as pixel) in the image area
 - 6. Wafer thickness ~50 μm
 - 7. Multi-channel low power readout ASIC → Takubo's talk
- Prototype sensor in FY2007
 - Tackle issues 2, 3, 4, and 5

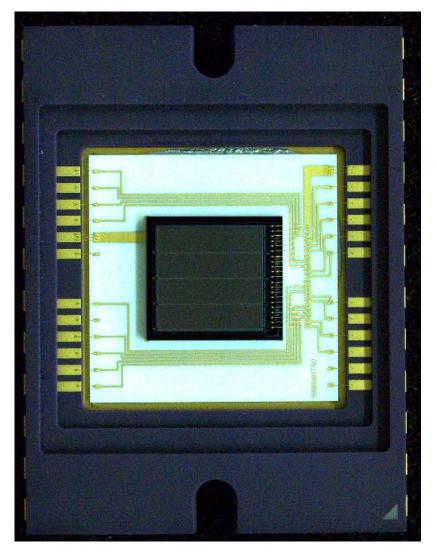
Prototype of FPCCD

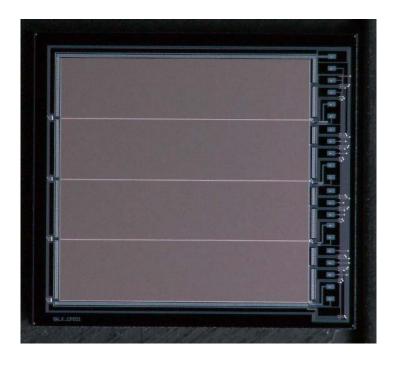


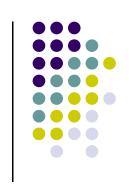
- 12μm pixel size
- 512x512 pixels
- 6.1mm² image area
- 4ch /chip
- 128(V)x512(H) pixels for each channel
- Several different designs of output amp
- Chips have been made by HPK

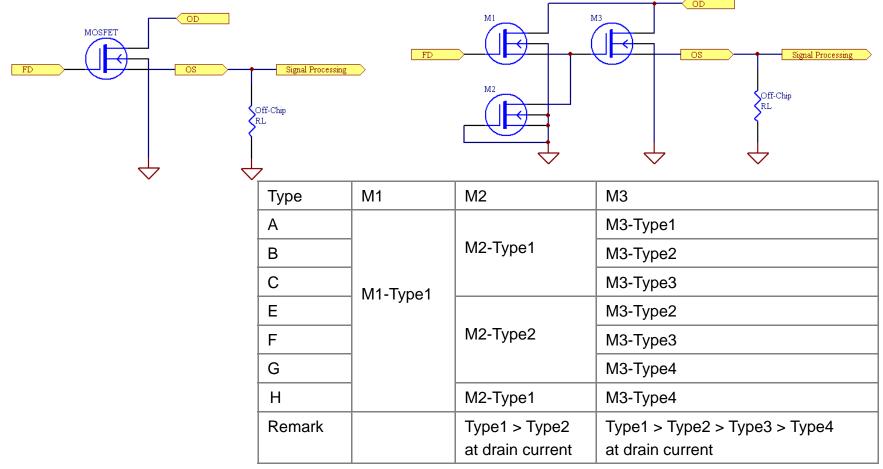
Types of Prototype

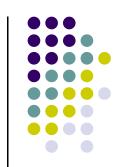
Output amp: type A – H

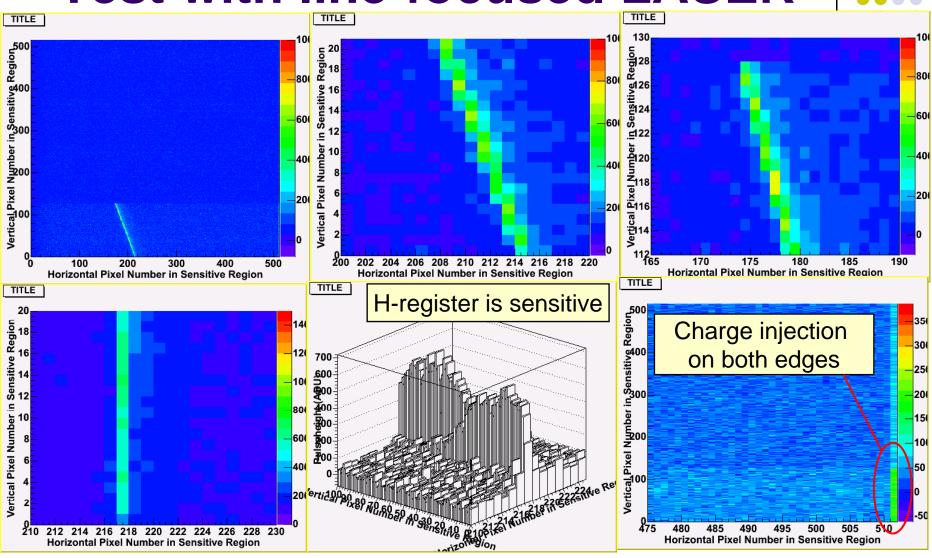

Process / Device type


- Wafer: epitaxial layer 24 / 15 μm
- Gate SiO₂ for output Tr: standard (all) / thin (CP204, 205)
- Device type: package / bare chip






Output amp • Type D


Preliminary results given by HPK

Device type	Package		Bare chip	
Epi thickness (μm)	15	24	15	24
V-register gate capacitance (pF)	1600	550	1600	550
H-register gate capacitance (pF)	40	40	40	40
Output source capacitance (pF)	<4	<4	<2	<2

Amp type		Α	В	С	Е	F	G
Output gain (μV/e)	Epi:15 μm	5.4	5.3	5.2	6.9	6.2	5.6
	Epi:24 μm	5.8	5.3	5.0	6.6	5.9	5.4
ld (mA)	Epi:15 μm	1.57	1.55	1.50	1.28	1.22	1.14
	Epi:24 μm	1.48	1.44	1.38	1.15	1.09	0.99

$$V_{OD}$$
=10V, R_L =10k Ω , 10MHz, RT

Test with line-focused LASER

- Same pixel (12μm) and chip size
- Larger full-well capacity
- No charge injection
- Double Al layers to reduce R of H-register

- The first prototype FPCCDs have been made by HPK
 - Pixel size: 12μm
 - H-register same size as pixels
 - 4ch/chip
 - Several types of output circuit
 - Two different epitaxial layer thickness (15 / 24 μm)
 - Two different gate oxide thickness for output transistors
- Detailed study on the prototype FPCCDs has started
 - H-register is sensitive
 - Charge injection is seen on both edges of the chip
- Improved prototype is planned in FY2008