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Yale/Oregon/Sarnoff

Chronopixel (CMOS) . D
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o January, 2007
v, Completed design — Chronopixel

« 2 buffers, with calibration
Deliverable — tape for foundry
563 transistors
Spice simulation verified design
TSMC 0.18 pm = ~50 um pixel

+ Epi-layer only 7 um

« Taking to JAZZ (15 um epi-layer)
o May 2008

v, Fabricated 80 5x5 mm chips, containing
80x80 50 um Chronopixels array (+ 2
single pixels) each

o October 2008
v, Design of test board started at SLAC

v, Simulation of the expected prototype
performance done
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How Chronopixel works o

5

When signal generated by particle crossing sensitive layer exceeds
threshold, snapshot of the time stamp, provided by 14 bits bus is
recorded into pixel memory, and memory pointer is advanced.

If another particle hits the same pixel before device readout was
completed, second memory cell is used for this event time stamp.

During readout, pixels which do not have any time stamp records,
generate EMPTY signal, which advances IO-MUX circuit to next
pixel without wasting any time. This speeds up readout by factor of
about 100.

Comparator offsets of individual pixels are determined in the
calibration cycle, and reference voltage, which sets the comparator
threshold, is shifted to adjust thresholds in all pixels to the same
signal level.

To achieve required noise level (about 25 e r.m.s.) special reset
circuit (soft reset with feedback) was developed by Sarnoff
designers. They claim it reduces reset noise by factor of 2.
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Sensor design - CD
N
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Figure 11.1  Proposed pixel architecture employing the deep p-well layer Figure 6.3 Comparison of the vertical cross section views of two pixels

Ultimate design, as envisioned  Two sensor options in the fabricated chips

o TSMC process does not allow for creation of deep P-wells. Moreover, the
test chronopixel devices were fabricated using low resistivity (~ 10 ohm¥*cm)
epi layer. To be able to achieve comfortable depletion depth, Pixel-B
employs deep n-well, encapsulating all p-well in the NMOS gates. This
allow application of negative (up to -10 V) bias on substrate.

Nick Sinev  LCWS08, University of Illinoisat Chicago  November 18, 2008 5



7\
Two layouts . D
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Pixel A layout " Pixel Blayout
o Because of design rules for TSMC 0.18 process, requiring S n
spacing between deep P-wells, the charge collection electrode in the

pixel B is smaller (10u x 8u) compare to pixel A (12p x 10p).
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TCAD electric field simulations

Pixel A

o Depletion depth in pixel A and pixel B at 0 V on substrate is the

Pixel B: 0 V on substrate

Pixel B: -10V on substrate

same, but collection of the charge in pixel A is a little more efficient
because of larger collection electrode size and p-wells surrounding
collection electrodes reduce area of competing collection.
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Simulation of the signals from FeS5 . G -
N
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o Iron 55 signal will allow us to do sensitivity calibration. Of course,
we do not have any means to measure signal in chronopixel, except
using sliding discriminator threshold. And here, as well as for real
operations, we need equality of the thresholds in the individual
pixels.
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charge collection time, ns

Charge collection time for FeS3S hits
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O As expected, pixel A configuration has the largest collection time,
but still it is better than 10 ns on average.
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Calibration procedure DK
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Figure 10.3 Timing diagram showing the calibrator operation

o During calibration, comparator reference voitage changes from
Vlow to Vhigh in 8 steps, controlled by Cal CLK clock pulses. As
soon as it reaches the value when comparato flips, state of the clock
counter is recorded into calibration register — individual for each
pixel. During normal operation this register is used to select
comparator offset for given pixel.
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Tests plan - D
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The most important part of the tests is to check, if calibration
procedure working, and is 2 mV range enough to cover offsets in all
pixels.

Second test will be to check memory operations. In principle,
writing into time stamps memory is only done by pixel comparator,
sensing signal. But for testing of memory proper operation, external
write signal can be used to record any value into selected memory
cell and when read it back.

If everything goes smooth, even for some part of the pixels, Fe55
source can be used to determine sensitivity (expected 10 uV/e) and
noise level (by the width of FeSS peak).

After that tests with IR laser will follow to check time stamping
operations.

Of course, power consumption, and all questions concerning 3MHz
time stamp bus operation should be investigated.
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IR laser with microscope at UO
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MIP test o S‘i D -
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o From simulation expected efficiency for pixel B at -10V on substrate will be
around 6-7%. If the opportunity to have test beam (or even Rul(06 source
with thin telescope), we can check this number, as well as time stamping
with real particles.

Nick Sinev  LCWS08, University of lllinoisat Chicago  November 18, 2008 13



, , 7\
Future plan for Chronopixel project . G -
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o In the next production, if there will be enough funding, we should
try to move to real detector configuration, even though still within
180 nm technology (so keeping 50x50 pm pixel size).

% Increase epi layer thickness to 15-17 pm

% Increase epi layer resistivity (reduce doping). We’d like to have
resistivity of the order of few KOhm¥*cm, to have larger depleted
volume, but as TCAD simulations show, it is not the critical issue. We
never can have full depletion thorough all sensitive layer in the deep P-
well case. So charge collection always will be by diffusion. However
larger depleted volume will help capture carrier faster, limiting
diffusion distance before collection, so boosting signal value in central
pixel (helps efficiency) and reducing number of pixels fired by one
particle (reduce occupancy).

% Implement deep P-well.
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Simulation of deep P-well device - D
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TCAD simulation of the field in the 17pm thick 50x50pm? pixel with
deep P-wells encapsulating all electronics (the same 2um deep as n-
wells). White line shows the limits of fully depleted volume.
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Charge collection in deep P-well pixel o CiID -
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o If Fe55 hit occurs in undepleted area, the charge is shared mostly by
two pixels, as indicated by wide peak at half of main peak
amplitude.
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Track efficiency for deep P-well pixel « G D -
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Number of pixels above threshold of Firing time (time when signal reaches
125 e (5 times expected noise r.m.s). comparator threshold) distribution

We see 100% efficiency in that case  for central pixel.

O We can see, that if goal of 25 e noise will be achieved, such pixel will have
100% efficiency for min. ionizing particles. Efficiency drops with threshold
rather quickly -> 98% with threshold 200e (40e noise), 94% with 250e (50e
noise).
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Technology Roadmap

o Pixel sizewill scale down as technology advances

% 180 nm -> 45 nm
% 50 uwm pixel -> 20 um or smaller pixel

Technology Roadmap: Macropixel size estimation
vs. Mixed-signal Process Technologies

Pixel -
Pitch Year Available

A > 200 > 2004 > 2005 > 2007 > 2009>
50um
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1.8V/3.3V  1.2V/2.5V/3.3V  1.2V/2.5V 1.0V/1.2V/2.5V 0.8V/1.0V/1.2V

30um
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Conclusions . 5; D
N

First chronopixel prototypes have been fabricated, packaged and
delivered to SLAC for testing.

Test equipment at SLAC expected to be ready in January 2009

We are looking for the manufacturer of the next prototype
implementing deep P-well. Depending on how much correction to
the design will be needed, next prototype may be ready for
submission at the end 2009 — beginning 2010. It still will be 50x50
pm pixels, but completely operational, 100% efficient device.

After that accomplished, scaling to 45 nm technology may be
thought. So, funding depending, we can be ready to start design of
final vertex detector sensors in 2011-2012.
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