Status of CesrTA Optics November 17, 2008

Jim Shanks

Cornell Laboratory for

Accelerator-Based Sciences and Education

Overview

- CesrTA Lattice Design
- CESR Reconfiguration Summary
- Transition to High-Tune, Low-Emittance Optics
- Initial Measurements
- Summary and Prospects: LET Plans for January

Design Parameters

- CESR wigglers are similar to the proposed ILC damping ring wigglers
- Placing wigglers in regions of zerodispersion lowers the minimum achievable emittance by a factor of 4
 - We can already create zero-dispersion regions in 6 of the 12 wigglers
 - Remaining 6 must move to L0 straight, where we can create another zero-dispersion region

CesrTA Design Parameters

Right: design betas, dispersion **Below**: design parameters

Parameter	Value
Energy	2.085 GeV
No. Wigglers	12
Wiggler B	1.9 T
Qx	14.57
Qy	9.62
Qz	0.055
ε _x	2.6 nm
$lpha_{ t c}$	6.76e-3

Dynamic Aperture

- Black line on plot shows 3σ injection envelope
- 1% energy deviation is well within 1σ requirement for injection

CESR Reconfiguration

- Successfully reconfigured CESR in July-September:
 - Removed drift chamber in CLEO detector
 - Removed IR solenoid / quadrupoles, other final focus elements
 - Moved the 6 wigglers in 14-15E/W to L0 area
 - Full survey / alignment after relocating the wigglers

Transitioning to Low- ε Optics

- Going from low-tune to high-tune (Qx = 14.57) optics is not trivial
- Transition in steps:
 - Start in June optics: Qx = 10.57, keeping the arcs identical and modifying L0 and L3 to account for new magnet structures
 - Ramp up the 6 wigglers in L0 to 1.9T (still low-tune), compensating for wiggler focusing with quads
 - Least confidence in new L0 quads, therefore increase horizontal tune to 14.57, but hold new L0 quads constant
 - We are able to do this thanks to independently-powered quads
 - Result: immediately stored beam
 - Finally load low-emittance optics to achieve zero dispersion in L0 wigglers
- We now have good injection in both e+/e- conditions
- First pass correction of orbit, betatron phase and coupling were completed

Measurements

Measurements from the final high tune, low-emittance optics:

Note: Correcting orbit, phase and coupling is an iterative process. These are results from the first pass of corrections.

30

-2.0

Compare: Typical Phase/Coupling Correction

 Example of a typical phase/coupling correction from June CesrTA run (actual data):

RMS = 0.008

Note: 5.3GeV, low-tune conditions, no wigglers on

Dispersion Measurement

Measured dispersion:

Phase, Coupling Correction

Model Beta Errors

- After fitting the phase and coupling with all quad and skew quad strengths, we can look at the resulting model beta
- Compare to the design betas (take difference):

 Phase/coupling measurements are more sensitive to quad strength errors than betas

Dispersion Measurement

- Fitting phase and coupling also produces a model for the dispersion
- Compare this model to the manual dispersion measurement:

- Results indicate that when we correct the phase and coupling, we will correct the horizontal dispersion as well
- Corrected horizontal dispersion would be zero in L0
- Vertical quad offsets are not included in this model

Summary

- Successfully transitioned to CesrTA optics
- New high-tune, low-emittance optics have been loaded, with acceptable injection
- First measurements of orbit, phase, coupling, and dispersion indicate we are in good condition
- Prepared to correct optics in January with a variety of tools

Low-Emittance Tuning Plan

Determine BPM gain errors

- Steering magnets
- Quads/skew quads
- Quad offsets, vertical correctors

BPM tilts, "shear"

