

BDS optics and minimal machine study

Deepa Angal-Kalinin
ASTeC & The Cockcroft Institute
Daresbury Laboratory

17th November, 2008 LCWS08/ILC08

Contents

- RDR BDS Design
- Minimal machine
 - Proposed changes and implications to the BDS lattice design
 - Layout possibilities
 - Constraints
 - Design criteria
 - Upgrade path
- Discussion

RDR BDS Design

BDS RDR Design Criterion

- Initial operation at (up to) 250 GeV; upgrade to 500 GeV by adding magnets only
 - no layout/geometry changes (beam dumps locations fixed)
- Decimate dipoles : reduce ∫Bdl for 250 GeV operation by reducing lengths (i.e. number of dipoles); reserve space for additional dipoles to keep layout fixed
- Quadrupoles & sextupoles unchanged
 - reduce ∫Gdl for 250 GeV operation by reducing strengths
 - Final Doublet magnets will have to be replaced for 500 GeV
- Final Focus: 12 m "soft" bends divided into 5 × 2.4 m pieces
 - -start with center piece only at each location
 - space reserved for remaining 4 pieces at each location for 500 GeV
- Synchrotron Radiation Emittance Growth (DIMAD tracking; SYNC option 2)
 - @ 250 GeV, emit/emit0 = 1.0036
 - @ 500 GeV, emit/emit0 = 1.0078

http://www.slac.stanford.edu/~mdw/ILC/2006e/doc/BDS2006e.ppt

Hybrid & Minimal (250 GeV) layouts

ILC2006e (hybrid) Beam Delivery Systems Layout

ILC2006s Beam Delivery Systems Layout

A.Seryi, Y. Nosochkov, M. Woodley

ILC2006s: Lattice details

ILC2006s: Optics

A.Seryi, Y. Nosochkov, M. Woodley

Central Region Integration

- Undulator-based positron source moved to end of linac (250 GeV point)
- e+ and e- sources share same tunnel as BDS
- upstream BDS (optimised integration)
- Including 5GeV injector linacs
- Removal of RDR "Keep Alive Source"
- replace by few % 'auxiliary' source using main (photon) target
- 500 MV warm linac, also in same tunnel
- Damping Rings
- in BDS plane but horizontally displaced to avoid IR Hall
- Injection/Ejection in same straight section
- Circumference
- 6.4 km (current RDR baseline)
- 3.2 km (possible low-P option)

Undulator location

- Changes in BDS layout to accommodate this
 - Dogleg to provide clearance for the e+ photon target
- TESLA design: switchyard to allow photons to the target as well as beam to second IR.

Dogleg: TESLA

- 100 m for undulator + 300 m photon beam line (proposed 400m for ILC to reduce the offset of dogleg)
- TESLA Transverse clearance at target (60cm)
 Need more for ILC ? (remote control, 1m transverse concrete shielding).
 ~100cm (need exact number).
- Beam pipe can pass through this shielding but without any component

TESLA: emittance growth

Horizontal emittance growth for the entire BDS, and a beam energy of 400 GeV (design emittance $\gamma \varepsilon_x = 8 \times 10^{-6} \text{ m}$).

14% emittance growth was considered to be acceptable.

Positron Source & BDS integration

Figure 1: Approximate lengths and locations of source components and damping rings compared to both the RDR BDS and the proposed minimum 500 GeV BDS.

17th Novembe

Layout possibilities

- Fast extraction/tuning before undulator? This will protect the small aperture of the undulator.
- Beam diagnostics (coupling correction and emittance measurement section) before the undulator?
 - before dogleg no bends and tune-up dump
 - laser wire photon detection?
- Polarisation measurement probably better after the undulator?
 - Will need dedicated chicane for fast extraction : will add to the overall length.

Design Criterion

- Dogleg: design criterion
 - How much emittance dilution is acceptable?
 - ISR emittance growth for ILC2006s (no dogleg) is 0.5% (criterion?)
- Can dogleg be combined with energy collimation?
- Order of collimation will be energy, betatron => collimation performance
- Location of muon wall (possible DR injection)
- Can we change the spoiler survival criterion to 1 bunch at 250 GeV?
- Locations of energy and polarisation measurements

Upgrade path

- Beam dump locations cannot be changed
 - Consider if having only one beam dump for tuning + post collision will save cost.
- To extend the BDS backwards will not be possible due to undulator location?
- To discuss...