Status of the ILC Main Linac BPM R&D

Thibaut Lefevre
CERN
Claire Simon
CEA Sacley
Sebastien Vilalte
LAPP
Manfred Wendt
Fermilab

Agenda

- Introduction
- CM-"free" cavity BPMs.
 The SLAC prototype BPM.
- Cold ILC cavity BPM R&D at Fermilab, Read-out hardware developments.
- Re-entrant BPM R&D for XFEL & CTF3 at CEA-Saclay.
- Radiation tolerant read-out electronics R&D for CTF3 at LAPP.
- Conclusions

ilc Cold BPM for an ILC Cryomodule

- ILC beam parameters, e.g.
 - Macro pulse length t_{pulse} = 800 μs
 - Bunch-to-bunch spacing Δt_b ≈ 370 ns
 - Nominal bunch charge = 3.2 nC
- Beam dynamic requirements
 - < 1 μm resolution, single bunch (emittance preservation, beam jitter sources)
 - Absolute accuracy < 300 μm
 - Sufficient dynamic range (intensity & position)
- Cryomodule quad/BPM package
 - Limited real estate, 78 mm beam pipe diameter!
 - Operation at cryogenic temperatures (2-10 K)
 - Clean-room class 100 and UHV certification

Cavity BPM Principle

- "Pillbox" cavity BPM
 - Eigenmodes:

$$f_{mnp} = \frac{1}{2\pi\sqrt{\mu_0 s_0}} \sqrt{\left(\frac{I_{mn}}{R}\right)^2 + \left(\frac{p\pi}{l}\right)^2}$$

- Beam couples to

$$E_x = CJ_1\left(\frac{J_{12}r}{R}\right)\cos\theta e^{t\omega t}$$

dipole (TM₁₁₀) and
monopole (TM₀₁₀) modes

- Common mode (TM₀₁₀) suppression by frequency discrimination
- Orthogonal dipole mode polarization (xy cross talk)
- Transient (single bunch) response (Q_L)
- Normalization and phase reference

CM-"free" Cavity BPM

Coupling slot (somewhat exaggerated)

Waveguide TE₀₁-mode HP-filter

$$f_{010} < f_{10} = \frac{1}{2a\sqrt{s\mu}} < f_{110}$$

between cavity and coaxial output port

• Finite Q of TM_{010} still pollutes the TM_{110} dipole mode!

ILC Cryomodule Cavity BPM

SLAC approach:

- S-Band design with reduced aperture (35 mm)
- Waveguide is open towards the beam pipe for better cleaning
- Successful beam measurements at SLAC-ESA,
 ~0.8 µm resolution
- No cryogenic tests or installation
- Reference signal from a dedicated cavity or source

SLAC BPM Scaled to L-Band

Mode Frequency

- 1 1.017 Parasitic E_{11} -like
- 2 <u>1.023 Parasitic E₂₁-like</u>
- 3 1.121 Monopole E_{01}
- 4 1.198 Waveguide
- 5 1.465 Dipole E₁₁
- 6 1.627

Parasitic mode. Coupling through horizontal slots is clearly seen

Fermilab L-Band Design

ile HFSS Simulations: Dipole Mode

Simulations: Monopole Mode

Cold L-Band ILC BPM R&D

Status:

- EM simulations & construction finalized
- Brazing and low temperature UHV tests
- All parts manufactured, ready for brazing
- Prototype has "warm" dimensions

Cold ILC L-Band Cavity BPM

ilc FNAL ILC Cavity BPM Summary

- Cold L-Band cavity BPM, fits in an ILC cryostat, 78 mm aperture.
- Waveguide-loaded pillbox with slot coupling.
- Dimensioning for f_{010} and f_{110} symmetric to f_{RF} , $f_{RF} = 1.3$ GHz, $f_{010} = 1.125$ GHz, $f_{110} = 1.468$ GHz.
- $(R_{sh}/Q)_{110} \approx 14 \Omega$ (1 mm beam displ.), providing < 1 µm resolution.
- Dipole- and monopole ports, no reference cavity for intensity signal normalization and signal phase (sign).
- $Q_{load} \approx 600$ (~10 % cross-talk at 300 ns bunch-to-bunch spacing).
- Minimization of the X-Y cross-talk (dimple tuning).
- Simple (cleanable) mechanics.
- Many EM-simulations (HFFS, MWS) analyzing dimensions and tolerances (see A. Lunin, et.al, DIPAC 2007).
- Successful tests of the ceramic slot windows,
 i.e. several thermal cycles 300 K -> 77 K -> 300 K
- Next Steps:
 - Warm prototype finalization (brazing), RF measurements, tuning, beam tests (at the A0-Photoinjector).

ilc FNAL Read-out Electronics R&D

- Based on SLAC-style analog single stage down-converters (IF ≈ 30-50 MHz)
- **Integrated calibration system**
- VME digitizer (8-ch.,14-bit, 125 MSPS) with FPGA-based digital signal processing and down-converting to base-band.

Reentrant Cavity BPM for the XFEL (1)

• 30 reentrant cavity BPM will be installed in XFEL cryomodules

saclay

• For the XFEL, mechanical design improved to respect tolerances of the BPM : Roll Angle **3 mrad**, Transverse displacement **0.2 mm**

Cryogenics tests at 4 K on feedthroughs is OK

Cu-Be RF contacts welded in the inner cylinder of the cavity to ensure electrical conduction.

Twelve holes of 5 mm diameter drilled at the end of the re-entrant part for a more effective cleaning (Tests performed at DESY).

Copper coating (depth: 12 µm) to reduce losses. Heat treatment at

400°C to test: OK

ILC/LCWS

Reentrant Cavity BPM for the XFEL (2)

- Hybrids will be installed near the BPM
- Signal processing electronics uses a single stage down conversion
- Electronics based on an PCB with low cost surface mount components

Reentrant Cavity BPM for the XFEL (3)

Beam tests carried out with the room temperature reentrant BPM

Good linearity in a range ± 12 mm

RMS resolution: ~4 µm on the Y channel

∼8 µm on the X channel

with 1 nC and dynamic range +/- 5 mm

Simulated resolution with 1 mm beam offset: < 1 um

Damping time (Cavity): 9.4 ns

Time resolution (Cavity + electronics): ~40 ns

IF signal behind Lowpass Filter on channel Δ

Possibility bunch to bunch measurements

100 bunches read by the reentrant BPM

Reentrant Cavity BPM at CALIFES (1)

- Cavity BPM is designed for the CTF3 probe beam (CALIFES)
- It is operated in single and multi-bunches modes

Bent coaxial cylinder designed to have:

- a large frequency separation between monopole and dipole modes
- a low loop exposure to the electric fields

Eigen modes	F (MHz)	Q _I	(R/Q) _I (Ω) at 5 mm	(R/Q) _I (Ω) at 10 mm
	Measured	Measured	Calculated	Calculated
Monopole mode	3988	29.76	22.3	22.3
Dipole mode	5983	50.21	1.1	7

ILC/LCWS 18

œ

saclay

Reentrant Cavity BPM at CALIFES (1)

Signal processing electronics

Reentrant Cavity at CALIFES

△ signal (gain adjusted to get an RF signal ~ 0 dBm, simulated in single bunch)

with 5 mm offset: 590 mV (simulated), Noise: 0.5 mV (calculated)

Resolution: 3.2 µm (simulated)

with 0.1 mm offset: 555 mV (simulated), Noise: 0.1 mV (calculated)

Resolution : 100 nm (simulated)

Reentrant Cavity BPM at CALIFES

6 BPMs are installed on the CTF3 probe beam

Signal processing electronics of the re-entrant BPM

BPM Acquisition architecture

<u>Aim:</u> reduction of costs of long analog cables/ADC

→ Rad-hard acquisition electronics close to beam.

Analog module: Intensity & deviations processing BPI or BPM.

DFE board:

- digitalization 3channels, 12 bits / 200MSps.
- Feed-back for analog modules: gains, calibration and attenuations.
- Daisy chain acquisition: 1 network cable per crate.

Acquisition PC: FESA-OASIS soft and specialist requirements feed-back.

→ Cost divided by a factor 3 comparing to a « far » acquisition.

Read-out

Uranus

Results

Debug during summer 2008:

several problems on sampling electronics and transmissions currently solved by soft.

Jitter solved by a trigger, sampling memory still to be calibrated.

Thanks to operation team feedback and patience!

Future : acquisition for CLIC

The logical evolution of this system is to be dedicated to a larger accelerator as CLIC:

Rare acces from surface, high number of channels, rad-hard, low-cost, low consumption...

Most important points to develop: elimination of cables

- Power supplies: autonomous (220V sector, DC-DC converters...).
- Local calibration.
- Network: flexible data collection, repetition crates...
- Acquisition architecture: faster ADC, direct bpm read-out, continuous sampling...
- FPGA processing: raw data, processed data...
- Radiations.

Future : acquisition for CLIC

\rightarrow All-around accelerator standard acquisition.

A lot of specifications to be discussed with the collaboration:

- Input stages and input dynamic ranges.
- Informations to collect: definition of transfer rates.
 - → possible switching between FPGA local process of position/intensity and raw data for precision.
- Definition of a standard crate for a module (n channels)
- Infrastructure possibilities to study (see Lars concrete shielded crate...)
- ETC...

Future: R&D in LAPP

LAPP decided to get involved for a 2 years development:

~3 men/year and IN2P3 funding ~50k€/year.

New acquisition board:

- 4 analog inputs with several input dynamic ranges,
 12bits sampling.
- 6GHz optical link for data, timing: no more cables, no EMC problems...
- A Clock-management architecture to get free from timing problems.

Conclusions

- Most R&D activates in the US were "on hold".
 - Now restarted, on a lower budget, and a modified goal (NML test facility, Project X)
- At Fermilab a cold L-Band cavity BPM prototype with 78 mm aperture, $Q_{load} \approx 600$, is in its final fabrication (brazing) procedure.
- A re-entrant BPM was tested at FLASH, achieving
 ~5 µm resolution (CEA-Saclay).
- Radiation tolerant read-out electronics are developed at European and US laboratories.