SiD R&D tasks for the LOI

- Subsystem R&D tasks
- Summary of SiD R&D
- Prioritization of R&D tasks
 - -> Document for DoE/NSF ~Feb 2009

(Mainly based on Marty's R&D document)

SiD has a *baseline design* appropriate to a detector concept at this stage of maturity and with an earliest construction start date more than 4 and probably more than 6 years out. The baseline design requires substantial R&D (mostly D) to progress towards a Technical Design Report.

Simulation, Reconstruction and Analysis Software

- Develop simulation software to optimize/validate detector design, demonstrate performance.
- PFA development beyond LOI
- Tracking performance
- Currently below critical mass for these tasks

(the SiD PFA for the LOI was developed by a very small group of dedicated people over an extended period of time. Some of these people will/have moved on. PFA development will continue post LOI!)

-? How to recruit/retain more people?

Beamline Systems

- Beampipe, Lumcal and Beamcal
- Major issue: selection of detector for Beamcal
- Chip for 100% occupancy being designed at SLAC
 - => should be good for Beamcal, inner part of Lumcal

Vertex Detector (VXD)

- MAJOR ISSUE: Selection of sensor(s) for ILC spatial and time resolution requirements

Some candidates:

- -> 3D structures (FNAL)
- -> bunch tagging MAP device
- -> Chronopix (Oregon, Yale, SLAC)
- + concept for short column CCD (SLAC)
- Make sensor selection late, study geometry, mechanical structure, and cooling options for now.
- Worldwide initiative on this topic LCWS08/CERN

Tracker

- Baseline design: Si strips/KPiX readout (bonded to sensor)
- Need several sensor demonstration
- Sensor demonstration in 5T field.
- Optimize sensors for endcaps

- Baseline alignment system is the Frequency Scanning Interferometer - needs demonstration.

Electromagnetic Calorimeter (EMCal)

- Si-W sampling calorimeter: high spatial resolution, small Moliere radius
- Pixels ~15mm², readout by KPiX bump bonded to sensors.
- Need several sensor demonstration, with attention to 1.25mm gap and long cables.
- 2nd generation sensor now available
- Alternative technology: MAP CMOS/very small pixels/threshold
- Need to test sensors in 5T field.

Hadronic Calorimeter (HCal)

- Baseline: 4.5λ steel absorber sampling calorimeter with RPC active layers with 1 cm² pixels and KPiX readout
- Alternative technologies: GEM, Micromegas and Scintillator/SiPM (who will work on this?)
- Highest priority: Meter scale tests of (scalable) technologies with integrated readout that fits within 8mm active gap with reasonable efficiency and crosstalk.
- Tests of 1m³ scale prototypes check on aspects of GEANT4 shower models(?)
- Another, more radical, alternative technology dual readout calorimetry, high density crystal or glass, using separate Cerenkov and Scintillator signals to achieve high jet energy resolution. Can this fit in ECal+HCal space?
- Need tests of all sensors in 5T field.

Particle Flow Algorithm

- Major effort! Now have a working version which satisfies the requirements of 3-4% jet energy resolution
- Now being used with track finding/reconstruction as the basis for event reconstruction for LOI physics studies.
- "SiD-ish" version of PANDORA/PFA used for SiD optimization.
- Frozen version of SiD PFA for LO studies but development continues for post-PFA.

_

Muon Tracker

- Baseline: Bakelite RPC's with strip "pixels" and KPiX readout
- Priority: prototype system with required efficiency and crosstalk
- Alternative technology: Scintillator with SiPM readout.

Electronics

- Priority: final development and demonstration of 1024 channel readout directly bonded to Si sensors.
- Power distribution, probably based on high voltage DC to low voltage DC conversion, integrated with data collection systems
- Data acquisition based on ATCA technology is being developed in parallel with efforts for LSST and other projects

Magnet

- Major effort: optimization of the steel to contain the leakage field and be made from transportable modules
- Solenoid baseline field is 5T and uses the CMS conductor
- R&D: develop a conductor that does not require e-beam welding of structural aluminum to the pure aluminum stabilizer, based either on metal matrix technology or co-extruded high strength wire ropes
- the magnet steel structure, the solenoid support, and the calorimeter support form the cryostat stable support for inner detectors during push-pull

General Issues

- -> LOI structure: R&D in individual sections/ R&D summary
- -> R&D summary as basis for prioritized R&D list to agencies
- how to achieve this?
- -> What time period should this cover through TDR/2012?
- -> Recent discussions between agencies and labs on ILC detector R&D
- -> Developing discussion with Universities on ILC detector R&D.
- -> Long term "model" for SiD detector R&D.