

Short remark on helicity reversal

Sabine Riemann (DESY) April 8, 2007 ILC Positron Source Group Meeting, DESY Zeuthen

Outline

- Strong physics case for running ILC after years of LHC operation
- polarized positrons will broaden the ILC physics potential

Current status: $P_{e^+} \approx 30\%$ (or even more, see Andriy's talk yesterday)

 \succ use the ≥30% for physics

remember: first NLC and TESLA physics studies were done with $P_{e_{-}} = 60\%$, $P_{e_{+}} = 40\%$!!

need fast helicity reversal

RDR: Running Strategy

Physics between 200 GeV and 500 GeV Luminosity: Year 1-4: $L_{int} = 500 \text{ fb}^{-1}$

1. year	10%:	L _{int} ≈ 50 fb ⁻¹
2. year	30%: + 100 fb ⁻¹	L _{int} ≈ 150 fb ⁻¹
3. Year	60%: + 150 fb ⁻¹	L _{int} ≈ 300 fb ⁻¹
4. year	100%: + 200 fb ⁻¹	L _{int} ≈ 500 fb ⁻¹

→ ee→HZ	at 350 GeV (mH≈120 GeV)	few 10 ⁴
ee→ tt	at 350 GeV	10 ⁵
ee \rightarrow qq (µµ)	at 500 GeV	5·10 ⁵ (1·10 ⁵)
$ee \rightarrow WW$	at 500 GeV	10 ⁶

➔ statistical uncertainties at per-mille level !!

Uncertainties:
$$\Delta \sigma \propto \frac{1}{\sqrt{N}} \oplus \frac{\Delta L}{L} \oplus \frac{\Delta P}{P} \longrightarrow O(10^{-3})$$

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

s-channel cross sections with pol e+ beams

Can perform independent measurements (s-channel vector exch.)

$$\sigma_{++} = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left(+ P_{e^{+}} - P_{e^{-}} \right) \right]$$

$$\sigma_{--} = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left(- P_{e^{+}} + P_{e^{-}} \right) \right]$$

$$\sigma_{-+} = \sigma_{u} \left[1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left(- P_{e^{+}} - P_{e^{-}} \right) \right]$$

$$\sigma_{+-} = \sigma_{u} \left[1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left(+ P_{e^{+}} + P_{e^{-}} \right) \right]$$

=0 (SM) if both beams 100% polarized

Standard Model s-channel

SLC:
$$P_{e+,} = 0$$

 $\sigma_{-} = \sigma_{u} [1 + A_{LR} (-P_{e-})]$
 $\sigma_{+} = \sigma_{u} [1 + A_{LR} (+P_{e-})]$

ILC with e+ polarization \rightarrow Cross section enhancement ~(1+P_{e-}P_{e+}) For (80%, ~30%) \rightarrow 25% gain in luminosity

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

s-channel asymmetries with pol e+ beams

Can perform 4 independent measurements (s-channel vector exch.)

$$\sigma_{++} = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left(+ P_{e^{+}} - P_{e^{-}} \right) \right]$$

$$\sigma_{--} = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} \left(- P_{e^{+}} + P_{e^{-}} \right) \right]$$

$$\sigma_{-+} = \sigma_{u} \left[1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left(- P_{e^{+}} - P_{e^{-}} \right) \right]$$

$$\sigma_{+-} = \sigma_{u} \left[1 + P_{e^{+}} P_{e^{-}} + A_{LR} \left(+ P_{e^{+}} + P_{e^{-}} \right) \right]$$

=0 (SM) if both beams 100% polarized

Standard Model s-channel

SLC: $\sigma_{\text{-0}}$ and $\sigma_{\text{+0}}$ used for A_{LR} measurement

$$A_{LR} = \frac{\sigma_{-} - \sigma_{+}}{\sigma_{-} + \sigma_{+}} \cdot \frac{1}{P_{e^{-}}}$$

LC:

$$A_{LR} = \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1 + P_{e^-} P_{e^+}}{P_{e^-} + P_{e^+}}$$

$$= \frac{\sigma_{-+} - \sigma_{+-}}{\sigma_{-+} + \sigma_{+-}} \cdot \frac{1}{P_{eff}}$$

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

Decrease of error on $P_{eff} = (P_{e_-} + P_{e_+})/(1 + P_{e_-} P_{e_+})$

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

e+ Helicity Reversal

e+ helicity flip less frequent than e- helicity reversal ?!

50% spent to 'inefficient' helicity pairing σ_{-} and σ_{++}

gain due to xs enhancement for J=1 processes with e+ pol is lost

Improvement of ΔP_{eff} remains

But: • systematic errors have to be known and small

- time dependent intensity/polarisation tolerances should be small
- = $P_{e} \cdot P_{e+} \Leftrightarrow$ need to understand correlations

No reversal could be worse than no e+ polarization!!

no reversal → no effective polarization, P_{eff} → larger uncertainty of polarization (syst. effects, error propagation)

Even if Pe+ = 0 you must have a high energy polarimeter (...PRECISION !!...)

Small polarization \rightarrow no physics gain but more complicated measurement / analysis \rightarrow less precision

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

Design proposals exist

K. Moffeit et al., SLAC-TN-05-045 \rightarrow fast reversal before DR (5 GeV)

5 Apr 2008, DESY Zeuthen, Positron Source Team Meeting

New proposal: K. Moffeit, M. Woods

- Fast reversal at ~125 MeV
- Sent to Sendai Meeting
- See Ken's talk in joint session with E/P Workshop

ILC undulator based source → polarized positrons (≥30%) we must include this in further studies and should try to find cost effective solutions to keep e+ polarization for physics

consequences for design:

- e+ polarization has to be taken into account
- e+ polarization has to be measured (in any case)
- helicity has to be reversable

Helicity reversal frequency:

desired:

- same flip frequency as for electrons should be possible
- independent flip
- Impact on machine looks small
- → well prepared for LHC physics results

Details of polarization must be considered in collaboration with polarization at IP (measurement, stability, etc.)

 \rightarrow See also Workshop on Energy and Polarization Measurement at IP