

Jeff Gronberg / LLNL April 8, 2008 Positron source collaboration meeting DESY / Zeuthen

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

1

Global Design Effort

10/9/2007

IL

Optical Matching Device

• What is it?

ΪĹ

- Point to parallel magnetic focusing optic after the target
- Why is it important?
 - Improves capture efficiency reduces photon flux required
 - Shorter wiggler
 - Lower heat load in target
 - Smaller dumps
 - Less radiation

Target Flux

A number of options have been considered

- The capture efficiency for the options have been simulated by SLAC/ANL/Cornell
 - Capture efficiency varies between 10% and 30%

- What are the options?
 - Nothing
 - ¼ wave solenoid
 - Pulsed flux concentrator
 - Immersed SC solenoid
 - Lithium lens

OMD	Capture efficiency
Immersed target (6T-0.5T in 20 cm) Eddy current show-stopper	~30%
Non-immersed target (0-6T in 2cm, 6T-0.5T 20cm) RDR baseline	~21%
Quarter wave transformer (1T, 2cm) Proposed EDR baseline	~15%
0.5T Back ground solenoid only	~10%
Lithium lens	~29% (~40%*)

* K=0.36 undulator

W. Liu

İİL

- Mikhailichenko to submit report on Lithium lens design
 - Submitted, CBN 08-1
- Conceptual design of 1/4 wave solenoid
- Flux concentrator engineering
 - No funding

Detailed Lithium lens design exists

Mikhailichenko CBN 08-1

- Most mature OMD design we have
- Some engineering questions related to survivability:
 - What is the radiation damage in the windows from photo-nuclear reactions?
 - What is the stress-strain in the windows from heating?
 - Does thermal cycling cause fatigue?
 - Is there cavitation in the liquid metal?
 - If yes, will this erode the windows?

İİĹ

Quarter Wave Transform

 Needs magnet expert to make a design

IIL

Pulsed Flux Concentrator

- Reduces magnetic field at the target
 - Reduced capture efficiency, 21%
- Pulsed flux concentrator used for SLC positron target
 - It is a large extrapolation from SLC to ILC
 - 1µs -> 1ms pulse length

İİL

Similar devices have been created before

- Brechna, et al.
 - 1965
 - Hyperon experiment
- Very preliminary ANL and LLNL simulations do not indicate showstoppers
- No one has stepped up to claim this is "doable"

04/08/2008

ILC parameters are close to Brechna

Parameter	Brechna	ILC	Units
Field Strength	10	7	Т
Pulse Length	40	1	ms
Repetition Rate	1/3	5	Hz

J. Sheppard

- Extrapolation from Brechna to ILC is not large
 - Lower field
 - Lower pulse length
 - Pulse length x repetition rate is similar
- Requires significant design and prototyping effort

 We want as much capture efficiency as is realistically possible

Status

- Cost reduction in the undulator
- Reduced radiation backgrounds
- High field at the target seems ruled out
 Some work on non-conductive materials has been done
- Flux concentrator seems to be a challenging engineering problem
- The ¼ wave solenoid seems realizable and appropriate for the baseline
- Lithium lens detailed design exists
 - Some work on survivability in the beam remains