

Overview of Positron Source Design

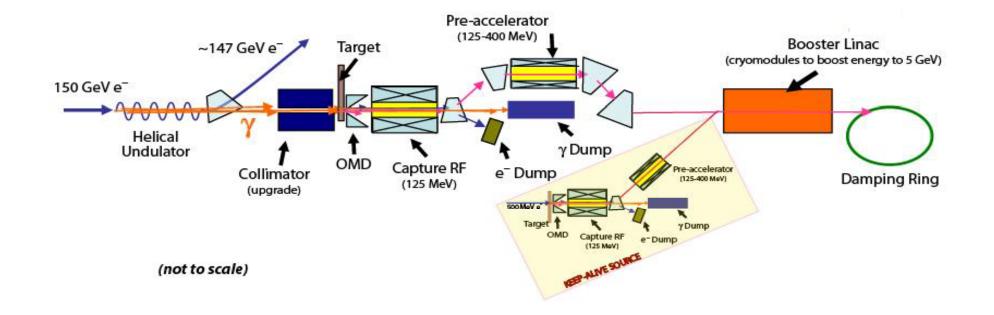
Jim Clarke ASTeC, STFC Daresbury Laboratory

ASTec. The RDR Parameters

Nominal Positron Source parameters ([†] upgrade values).

Beam Parameters	\mathbf{Symbol}	Value	Units
Positrons per bunch at IP	n_b	2×10^{10}	number
Bunches per pulse	N_b	2625	number
Pulse repetition rate	f_{rep}	5	Hz
Positron energy (DR injection)	E_0	5	${\rm GeV}$
DR transverse acceptance	$\gamma(A_x + A_y)$	0.09	m-rad
DR energy acceptance	δ	± 0.5	%
DR longitudinal acceptance	A_l	$\pm 3.4 imes \pm 25$	$\mathrm{cm}\text{-}\mathrm{MeV}$
Electron drive beam energy	E_e	150	${\rm GeV}$
Electron beam energy loss in undulator	ΔE_e	3.01	${\rm GeV}$
Positron polarization †	Р	~ 60	%

•Positron overhead of 50% after the target


 \rightarrow 3 x 10¹⁰ e⁺ per bunch at 400 MeV

•Positron overhead of 25% at the Damping Ring

 \rightarrow 2.5 x 10¹⁰ e⁺ per bunch within the DR acceptance

ASTEC RDR Source Layout

Accelerator Science and Technology Centre

Key Points

- Photon 'drive beam' generated in helical superconducting undulator at 150 GeV
- Photon beam transported ~400m beyond undulator and then impinges on Ti alloy target (0.4 rad lengths, 1.4cm)
- Positrons captured with OMD, accelerated with NCRF Linac with solenoidal focussing to 125 MeV
- Any electrons and remaining photons are then separated
- Positrons further accelerated with NCRF Linac with solenoidal focussing to 400 MeV
- Transported at 400 MeV for ~5km
- Accelerated to 5GeV in SCRF Linac and injected into DR

Keep Alive Source (KAS)

- A KAS is incorporated into the design
- KAS uses 500 MeV electron drive beam which impinges on W-Re target
- Positrons from KAS are accelerated to 400 MeV and then share common SCRF Linac to reach 5 GeV
- KAS designed to generate 10% bunch intensity for full bunch train (2625 bunches) at 5Hz

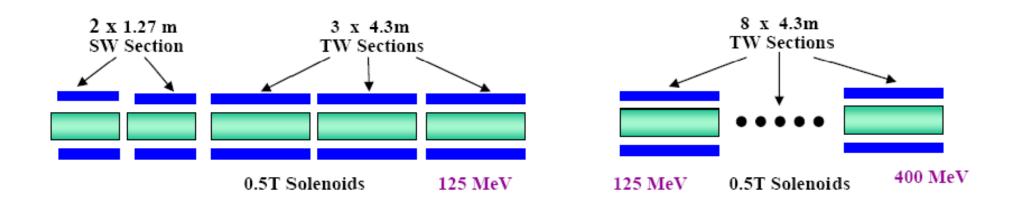
ASTec. Undulator

- 42 x 4m cryomodules (42 x 3.5 = 147m active length)
- Vacuum pumps, photon collimators, quads, BPMs installed every 3 cryomodules in room temp sections
- Corrector magnets in every cryomodule

Undulator Parameters	\mathbf{Symbol}	Value	Units
Undulator period	λ	1.15	cm
Undulator strength	Κ	0.92	
Undulator type		helical	
Active undulator length	L_u	147	m
Field on axis	В	0.86	Т
Beam aperture		5.85	mm
Photon energy $(1^{st} \text{ harmonic cutoff})$	E_{c10}	10.06	${\rm MeV}$
Photon beam power	P_{γ}	131	kW

Astec. Target

- 1m diameter spinning wheel
- Rim & spokes not disk to mitigate eddy current effects
- Designed for operational life of 2 years

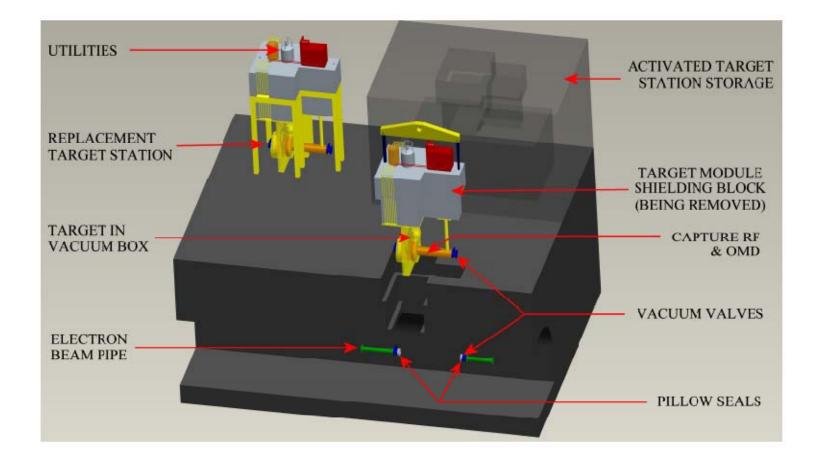

Target Parameters	Symbol	Value	Units
Target material		Ti-6%Al-4%V	
Target thickness	L_t	0.4 / 1.4	r.l. / cm
Target power adsorption		8	%
Incident spot size on target	σ_i	> 1.7	mm, rms

ASTec. Optical Matching Device

- Increases capture efficiency by ~ factor 2
- Solenoidal Peak field close to target of 5T
- Tails off to 0.5T (over 20cm) to match linac solenoids
- NC Flux Concentrator

ASTeC. NC RF Linacs

- Standing wave structure first (15 MV/m)
- Travelling wave structures second (8.5 MV/m)
- All surrounded by 0.5 T NC Solenoids (high power)
- All RF is 1.3 GHz

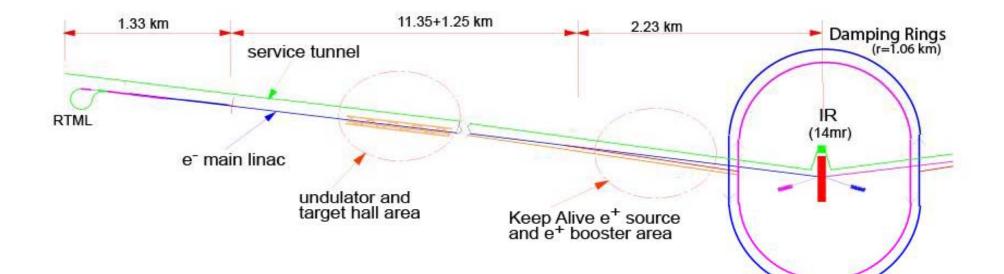


ASTeC. Dumps

- 9 dumps in the source
- Tune-up dump at pre-undulator extraction point (150 GeV)
 - → 100 bunch per train limit, 240 kW
 - Also acts as abort dump for one full train of electrons
- Tune-up dump at 5GeV pre-DR technically identical to the one above
- Photon dump, post-target
 - 300kW photon beam power (upgrade value)
 - → 150m dowstream of target
- Other dumps are low power and present no major challenges

ASTEC Remote Handling

- Needed for target, OMD, NCRF linacs
- Change over time for target ~ 2days
- Also needed for KAS Target



ASTec. 5GeV SCRF Linac

- Three types of cryostat used
- 4 x non-standard up to 1.083 GeV
 - → 6 (9-cell) cavities & 6 quads
- 6 x non-standard up to 2.626 GeV
 - → 8 cavities & 2 quads
- 12 x standard up to 5 GeV
 - → 8 cavities & 1 quad

(ASTEC CF&S Layout

Accelerator Science and Technology Centre

Area	Length (meters)
Undulator chicane insert	1257
Undulator center to target	500
Undulator insert length	200
Target Hall length	150
$400 { m MeV}$ long transport line	5032
Total RF acceleration length	350
Damping Ring injection line	431

(ASTEC, Issues Raised at Last Meeting

- Undulator
 - Completion of 4m prototypes with magnet measurements – Cornell and RAL
 - Generation of "real" spectrum and angular distribution from undulator system in form suitable for target/capture simulations – Daresbury
 - Write undulator electron beam test proposal Daresbury/RAL
- Target
 - Continue Eddy current work
 - Stress analysis to cover Cornell pressure concerns
 - Definitive evaluation of feasibillity of windows with rotating target

ASTEC. Issues Raised at Last Meeting

• OMD

- No mature solution yet
- QWT proposed for baseline since thought to be most feasible but capture efficiency reduces from 21 to 15%
- → Li Lens proposed (~40%) Cornell to report
- KAS
 - → Eliminate or reaffirm spec
- Remote Handling
 - → What else needs RH in ILC?
 - Define what exactly needs RH in positron source
 - Check cooling water activation
- Compton
 - Also include polarimetry needs

ASTEC, Issues Raised at Last Meeting

- Acc Phys
 - Optics needs tolerancing & diagnostics spec
 - Check activation of photon collimators in undulator
 - Summary of spin tracking results needed
- Polarisation
 - Scheme needed for 5Hz spin flip
 - Source group only responsible up to DR
 - Ensure polarisation upgrade included in all our work