

Cornell University Laboratory for Elementary-Particle Physics

NEWS FROM CORNELL

Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853

Positron Source Meeting, April 7-9, 2008, DESY Zeuthen

LAST YEARS ACTIVITY ASSOCIATED WITH

Undulator design; tested few 40 cm-undulators, tested few taperings

Simulation code KONN for parameters optimization (Monte-Carlo) Lithium lens (FlexPDE) Collimators (Conver-analog EGS4) Liquid metal target (Pb/Bi, Hg) with thermal stress calculations (FlexPDE) Eddy currents calculation in rim/disc (FlexPDE)

Tasks	Description	Time frame	Cost (pre-preliminary)
Monte-Carlo code for simulation of conversion	 Choice of undulator parameters (period, K, aperture) Choice of target dimensions (thickness, Ø) Choice of collection optics parameters (type, efficiency—Li lens or dual layer solenoid) 	2007-2008	30k\$
Undulator design	 Design and fabrication of modular cryostat System for magnetic measurements (4 m) Alignment, pumping, pickups String setup of 4 m long undulator 		200k\$+150k\$
Target design	•Rotating W-Ti (sandwich)	2007-2009	
	•Liquid metal target design (PD-BI and Fig, model)	2007-2006	70κφ+100κφ
	 Shock waves in target (enhancement of pressure) 	2007-2008	30k\$
Collection optics design	•Lithium lens (dynamics, windows: Be, BN,	2007-2008	70k\$+70k\$
	 Dual layer solenoid with compensated input (heat, mechanical stability, test) 	2007-2008	50k\$
Collimators	•Collimators for gammas	2009	_
	•Collimators for full power beam •Structure of power deposition in undulator	2009 2008	20k\$
Undulator chicane	 Minimal possible parallel shift ~450mm (optics, no hall option) 	2008	-
	•power density deposition	2008	20k\$
Perturbation of	•Dynamical perturbations of emittance	2008	30k\$
emittance	(regular part, fringe fields and tapering, chicane)•Radiative perturbations	2007-2008	_
Handling of	•Compensation of spin tilt in undulator	2008	20k\$
polarization	 (scheme) Fast spin flip schemes with helical field (scheme) 	2008-2009	40k\$
Combining scheme	•Two targets combining scheme calculations	2009	30k\$ 3

UNDULATOR DESIGN

Diameter of cryostat~10 cm (4")

Completed design;

System for magnetic measurement designed;

Undulator includes correctors and BPMs;

<u>3m possible</u>

Current input one/few modules (ten)

Will be extended to 2 m long ~4m total

Technology developed for fabrication of continuous yoke of necessary length (2-3m)

Wire having diameter 0.33mm chosen as a baseline one for now

For 10mm period the coil has 8(z)x11(r) wires; bonded in 4strands

For 12mm period the coil has 12(z)x12(r) wires bonded in 6 strands

Fabricated undulator with 6.35 mm Inner diameter (1/4") available for the beam; K=1.48 measured (13.5 mm period)

TESTED UNDULATORS

For aperture available for the beam 8 mm in Ø clear OFC vacuum chamber, RF smoothness

SC wire	54 filaments	56 filaments	56 filaments	56 filaments
# layers	5	6	11	9 (12) +sectioning
?=10 mm @300 °K	K=0.36 tested	K=0.42 tested	K=0.467 tested	K~0.5 (calculated)
?=12 mm @300 °K	K=0.72 tested	K=0.83 tested		K~1 (calculated)

For aperture available for the beam 6.35 mm (1/4") in Ø clear OFC vacuum chamber, RF smoothness

# layers	11		12+sectioning
?=13.5 mm @300 °K	K=1.48 tested		K~ 1.6 calculated
?=10.0 mm @300 °K	K~0.7calculated		K~ 0.72 calculated

CONCLUSIONS

Start to end code for Monte-Carlo simulation of conversion was developed;

For 500 GeV, a conversion system requires more efforts; one solution is to move the system as a whole to a new 150 GeV point, other solution -longer period of undulator

Helical iron yokes of ~3 m long obtained from industry;

Reached K=0.467 for 10 mm period; aperture 8 mm; Reached K=0.83 for 12 mm period; aperture 8 mm (old wire); Reached K=1.48 for 13.5 mm period; aperture 6.35mm (¹/₄")

Pumping of Helium was tested, gain >10%;

Few tapers for the undulator ends are tested

4-m long Undulator module fabrication and its test was a priority job for 2008;

ALL ILC ACTIVITIES ARE TERMINATED

Right now I switched to activities associated with ERL developed by Laboratory; This activity has funding so far.

Hoping that these activities will be requested by ILC some day also

Back up slides

