

Compton Source: ERL & Ring STATUS

Alessandro Variola LAL-IN2P3-CNRS

Optical Cavities & Lasers

- 1)R&D on Cavities 2- 4 mirrors and high average power laser in Orsay
- 2)ATF experiment

Feedback: Pound-Drever-Hall method Electronics, optics and mechanics Developped at LAL

vacuum cavity Gimbal mounts under vacuum

R&D setup at LAL/Orsay

1 W Ti:sa laser

1ps@f_{rep}=76MHz

DELAY due to experimental room Change (asbestos problems)

Status : Cavity locked ('*low gain'* ~ 1200) •Digital feedback (VHDL programming) •Already $\Delta f_{rep}/f_{rep} \sim 10^{-10} \Rightarrow \Delta f_{rep} \sim 76$ mHz for $f_{rep} \sim 76$ MHz •New mirrors asap ! \Rightarrow gains $10^4 - 10^5$

Alessandro Variola LAL-IN2P3-CNRS Locked cavity : Transmitted signal stable

4/7/2008

New R&D : started february 2008 Funds: GIS P2I+IN2P3 (+ANR ?) Reduced power in respect to the Eu program.....

1. Setup the following system at CELIA (Bordeaux)/LAL

- 2. Optics studies: phase noise (CPA or not CPA), power stability, cavity mirror heating (CELIA/LMA) ...
- 3. Installation of the system at ATF/KEK (with KEK)

Alessandro Variola LAL-IN2P3-CNRS

Choice of the cavity geometry LABORATOIRE DE L'ACCÉLÉRATEUR LINÉALRE Interaction plane must be horizontal

Cavity installation on the Accelerator Test Facility (ATF) at KEK

 \sim 54 m

$\gamma\text{-}\mathbf{ray}$ Generation with Laser Stacking Cavity in ATF

Hiroshima-Waseda-IHEP-KEK

Pulse Stacking 2-Mirror Cavity

L_{cav} = 420 mm Mirror with Piezo Actuator

Installed in ATF at KEK October 2007

Stacking Cavity in Vacuum Chamber

e beam

 $\gamma\text{-ray}$ Generation with Laser Stacking Cavity in ATF

Aim of the Experiment

- 1. Start experiment quickly with simple 2-mirror cavity
- 2. Achieve both high enhancement & small spot size
- 3. Establish feedback technology of Stacking Cavity (Mirror position)
- 4. Achieve small crossing angle
- 5. Get experience with e^{-} beam

 $\gamma\text{-ray}$ Generation with Laser Stacking Cavity in ATF

Aim of the Experiment

- 1. Start experiment quickly with simple 2-mirror cavity
- 2. Achieve both high enhancement & small spot size
- 3. Establish feedback technology of Stacking Cavity (Mirror position)
- 4. Achieve small crossing angle
- 5. Get experience with e^- beam

Goal

- 1. Enhancement = 1000 (with Mirror R = 99.9%)
- 2. N γ = 1000 /bunch (with 10 Watts laser input)

Aim of the Experiment

- 1. Start experiment quickly with simple 2-mirror cavity
- 2. Achieve both high enhancement & small spot size
- 3. Establish feedback technology of Stacking Cavity (Mirror position)
- 4. Achieve small crossing angle
- 5. Get experience with e^{-} beam

Goal

- 1. Enhancement = 1000 (with Mirror R = 99.9%)
- 2. Ny = 1000 /bunch (with 10 Watts laser input)

Status

- 1. Cavity was installed in ATF at KEK, October 2007
- 2. Still straggling to establish feedback, to make good laser input matching, and to isolate system from vibrations

Capture+Stacking Simulations (F.Zimmermann& A.Vivoli) Different solutions are analysed......

Polarization

Estimated polarization of accepted positrons at the target : 60%

AE	Туре	Ν. γ	Yield e⁺/γ	N. e ⁺	ε _x π mm mrad	ε _y π mm mrad	ε _z π cm MeV	σ _z cm	σ _E MeV
			%						
	1.3 / 5 (150 MeV)	0.67 10 ¹⁰	0.36	2.39 10 ⁷	15	17	1.53	1.67	3.55
	1.3 / 5 B. C. (0.3 X0)	0.67 10 ¹⁰	0.40	2.66 10 ⁷	16	15	2.64	0.28	9.99
	1.3 / 5 B. C. (0.4 X0)	0.67 10 ¹⁰	0.36	2.42 10 ⁷	13	14	2.74	0.28	10.64
	1.3 / 5 B. C. (0.5 X0)	0.67 10 ¹⁰	0.40	2.69 10 ⁷	16	17	2.91	0.28	10.92
	1.8 / 5 (180 MeV)	0.75 10 ¹⁰	0.88	6.65 10 ⁷	19	19	2.15	1.85	5.6
	1.8 / 5 B. C. 1	0.75 10 ¹⁰	0.90	6.78 10 ⁷	17	15	3.89	0.32	12.71
	1.8 / 5 B. C. 2	0.75 10 ¹⁰	0.81	6.08 10 ⁷	14	15	2.51	0.97	5.06

4/7/2008

Alessandro Variola LAL-IN2P3-CNRS

Туре	N. e⁺	${\cal E}_{x}$ π mm mrad	${\cal E}_{{f y}}$ π mm mrad	ε _z π cm MeV	σ _z cm	σ _E MeV	σ _x cm	σ _y cm
1.8 / 5 563 MeV	6.83 10 ⁷	7.5	6.5	4.32	0.53	9.77	0.84	0.73

4/7/2008

18

similar assumptions as for Snowmass'05

- stacking in longitudinal phase space
- sinusoidal rf, momentum compaction, radiation damping and quantum excitation
- between successive injections orbit at the septum is varied with fast bumper magnets
- energy of injected beam is ramped such that the transverse position of the septum always corresponds to a separation of 2 s_{d0} from beam centroid of injected beam
- Inj Scheme: ILC 2008: inject every second turn (80 MHz ERL) into the same bucket - 30 times; then wait 10 ms (~450 turns, ~1 damping time) and repeat 9 times; total injections/bucket: 300; synchrotron phase advance between two injections: 0.134

1st result: 76% of injected e+ are lost! for a single cycle: 35% loss

why is it worse than in 2005?

- \succ less e+ per injected bunch \rightarrow more injections
- > less momentum acceptance of damping ring
- Iarger damping time

possible remedies:
smaller momentum compaction factor
larger rf voltage
reduced synchrotron tune
larger interval between cycles (but already too short for complete vertical damping – Vitaly Yakimenko)
more particles x injection
different circumference
two rings, or pre-damping ring
More positrons/pulse (cross cavities)

additional DR wigglers for faster damping [x2] ✓ larger rf voltage [x 1.5] March 14 (A. Vivoli): best energy pre-compression "x2"

I am now trying

✓ energy pre-compression [x2] (R. Chehab)

 \checkmark additional DR wigglers for faster damping [x2]

✓ larger rf voltage [x 1.5]

	ILC 2008 - February	ILC 2008 - March	ILC 2008 - April	
beam energy	5 GeV	5 GeV	5 GeV	
circumference	6695 m	6695 m	6695 m	
particles per extracted bunch	2.0×10 ¹⁰	2.0×10 ¹⁰	2.0×10 ¹⁰	
rf frequency	650 MHz	650 MHz	650 MHz	
harmonic number	14516	14516	14516	
no. trains stored in the ring	52.5	52.5	52.5	
	(52.5/pulse)	(52.5/pulse)	(52.5/pulse)	
#bunches/train	50	50	50	
bunch spacing	6.15 ns	6.15 ns	6.15 ns	
gap between trains	~50 ns	~50 ns	~50 ns	
#e+ / injection	6.65×10 ⁷	6.65×10 ⁷	6.82×10 ⁷	
#turns between injections in 1 bucket	2	2	2	
injections/bucket per cycle	30	30	30	
injection frequency	80 MHz	80 MHz	80 MHz	
full cycle length	200 ms	200 ms	200 ms	
time between injection periods	10 ms	10 ms	10 ms	
#turns between cycles	450	450	450	
length of one injection period	0.963 ms	0.963 ms	0.963 ms	
TI=total # injections/bucket	300	300	300	
ST=store time after last injection	110 ms	110 ms	110 ms	
IP=time interval with injection periods	90 ms	90 ms	90 ms	
energy loss/turn	2 MeV	8.7x2 MeV	8.7x2 MeV	
longitudinal damping time t ₁₁	12.8 ms	6.4 ms	6.4 ms	

4/7/2008

Alessandro Variola LAL-IN2P3-CNRS e+/pulse is too high for ERL option, or?

	ILC 2008 - February	ILC 2008 - March	ILC 2008 - April	
transvonormalized edge emittance at Infection (10xrms)/R	0.063 rad-m	0.063 rad-m	0.070, 0.060 rad-m	
transv. normalized dynamic aperture (Ax+Ay)gamma	0.4 rad-m	0.4 rad-m	0.4 rad-m	
rms bunch length at injection	3.8 mm	11.4 mm	9 mm	
rms energy spread at injection	0.12%	0.04%	0.059%	
final rms bunch length	9 mm	5.2 mm	5.2 mm	
final rms energy spread	0.128%	0.091 %	0.091 %	
longit. "edge" emittance at inj.	0.72 meV-s	0.72 meV-s	0.87 meV-s	
rf voltage	24 MV	36 MV	36 MV	
momentum compaction	4.2×10-4	4.2×10-4	4.2×10-4	
2 nd order momentum compaction	-	-	-	
synchrotron tune	0.067	0.084	0.084	
bucket area	150 meV-s	129 meV-s	129 meV-s	
ICM=bucket area / long. edge emit. /p	66	57	47	
RMIN=TI/ICM	5	5	6	
IP/RMIN/t	1.4	2.8	2.3	
IP/RACT/t	0.78	1.56	1.56	
synchronous phase	21.30°	28.97°	28.97 °	
separatrix phases 1&2	158.70°, -124.19°	151.03°, -82.64°	151.03°, -82.64°	
max. momentum acceptance	+/- 1.57%	+/- 1.6%	+/- 1.6%	
total loss	76%	11%	15%	
loss for single injection cycle	35%	11%	15%	

4/7/2008

Alessandro Variola LAL-IN2P3-CNRS

24

energy pre-compression at 5 GeV should further improve the yield

questions & comments

•2x3 km ring is option from Andy Wolski; it could reduce the damping times by factor 2, if we do not reduce the length of the wigglers

- ring parameters can be considered somewhat flexible; at present parameters are optimized for the undulator based source
- can we reduce initial energy spread to 2 MeV rms?
- option of pre-damping ring for ILC?