Design Simulation – Zeuthen

S. Riemann, A. Schälicke, A. Ushakov

DESY Zeuthen

ILC Positron Source Collaboration Meeting Zeuthen, April 7, 2008

A. Ushakov (DESY Zeuthen)

Design Simulation - Zeuthen

Zeuthen, 07 Apr 2008 1 / 14

Conventional vs Undulator-Based Positron Source:

- Positron yield & capture
- Energy deposition
- Activation
- Outlook

Source Model

* That corresponds to aperture radius of photon beam collimator

	Conventional	Undulator Based		
Drive Beam				
Beam Energy	6.2 GeV	e-: 150 GeV e-		
		γ: 10.06 MeV		
		Helical Undulator:		
		K = 0.92		
		$\lambda = 11.5 \text{mm}$		
Beam Radius	1.5 mm	2.3* mm		
Target				
Thickness	4.5X ₀ 0.4X ₀			
Material	W25Re	Ti6Al4V		
OMD: Flux Concentrator				
B _{ini}	B _{ini} 6.0 T			
B _{end}	0.5 T			
Taper Parameter	60 m ⁻¹	30 m ⁻¹		
RF Cavities				
Aperture	46 mm			
	Cavities No. 1 & 2			
Number of cells	11			
Ave. gradient	14.5 MeV/m			
Cavities No. 3 & 4				
Number of cells	17			
Ave. gradient	8.5	MeV/m		

A. Ushakov (DESY Zeuthen)

Design Simulation - Zeuthen

	Conventional	Undulator Based	
Positron Yield (after Target)	14.54 e ⁺ /e ⁻	0.034 $\mathrm{e}^{+/\gamma}$	
		2.35 e ⁺ /e ⁻	
	DR Acceptance		
DR Longitudinal Acceptance	3.46* cm		
DR Transverse Acceptance ($\epsilon_x + \epsilon_y$)	0.09 rad m		
Capture Efficiency	34.2 % 63.7 %		
Required Drive Beam Power	84.6 kW	γ Beam at Target: 46.51 kW	
		γ Beam after Undulator: 65.86 kW	
		(Undulator Length: 71.9 m,	
		Photon Collimator Aperture: 4.6 mm)	

* Longitudinal bunch compression is required (energy compressor)

Photon Energy Spectrum and Polarization Helical Undulator: K = 0.92, $\lambda = 11.5$ mm. Photon Collimator Aperture: 4.6 mm

	Conventional	Undulator Based
γ Polarization	-	73.8 %
e ⁺ Polarization	-	45.0 %

Conventional Source

Gaussian Distribution:

 $\sigma_x = \sigma_y = 1.5 \text{ mm}$

Undulator Based Source

Undulator-target distance: 500 m Photon collimator aperture: 4.6 mm

Energy Deposition in Stationary Target

Energy Deposition in Stationary Target Along Beam Axis

Maximal deposited energy for conventional source is about 2.7 higher

A. Ushakov (DESY Zeuthen)

Design Simulation – Zeuthen

Energy Deposition in Stationary Target

Conventional Source: z = -1 mm Undulator Based Source: z [-8 mm; -4 mm]

Energy Deposition in Rotating Target

	Conventional	Undulator Based			
Stationary Target					
Average Deposited Energy, kJ/g	6.6	3.8			
Maximal Deposited Energy, kJ/g	\simeq 19	\simeq 7			
Target R	otation				
Target Radius, cm	100	50			
Revolution Rate, rpm	3400	1920			
Velocity, m/s	356	100			
Rotating Target					
Deposited Energy, J/bunch	1.13	0.26			
Bunch overlapping	14.46	107.83			
Maximal Temperature Increase, °C	137	63			
Maximal Thermal Stress, MPa	390	90			
Tensile Strength, MPa	1	100			

Source Activation: Equivalent Dose Rate

after 5000 hours of source operation at 1 m from the source

	Conventional	Undulator Based
after Source Switch-Off	700	280
after 1 hour	628	248
after 1 day	574	111
after 1 week	469	86

A. Ushakov (DESY Zeuthen)

Conventional Source

W25Re Target

Nuclei	Α	<i>T</i> _{1/2} , h	<i>D</i> _{+1<i>h</i>} , mSv/h	%
Re	184	911.9	499.5	79.51
Re	182	64.0	52.1	8.29
Re	183	1680.0	16.2	2.58
Re	181	19.9	14.6	2.32
Re	186	90.6	13.9	2.22

Undulator-Based Source

Ti6Al4V Target

Nuclei	Α	<i>T</i> _{1/2} , h	D _{+1<i>h</i>} , mSv/h	%
Ti	45	3.1	104.4	42.09
Sc	46	2011.9	86.7	34.96
Sc	44	3.9	21.3	8.59
Sc	48	43.7	19.1	7.71
Sc	47	80.4	13.6	5.47

Conventional Source

W25Re Target

Conventional	Source
--------------	--------

Pure W Target

Nuclei	А	<i>T</i> _{1/2} , h	D _{+1h} , mSv/h	%
Re	184	911.9	499.5	79.51
Re	182	64.0	52.1	8.29
Re	183	1680.0	16.2	2.58
Re	181	19.9	14.6	2.32
Re	186	90.6	13.9	2.22
Total			628.2	

Nuclei	A	<i>T</i> _{1/2} , h	<i>D</i> _{+1<i>h</i>} , mSv/h	%
Та	175	10.5	13.05	19.69
W	177	2.3	12.14	18.31
W	187	23.7	9.20	13.88
Та	176	8.1	8.08	12.19
Та	184	8.7	4.06	6.12
Та	174	1.1	3.51	5.29
Lu	169	34.1	3.29	4.97
Та	182	2746.3	2.62	3.95
Та	172	0.6	2.33	3.52
Та	183	122.4	1.69	2.55
Total			66.30	

- Positron yield, capture efficiency have been calculated for conventional and undulator-based sources with pulsed flux concentrator.
- Positron polarization has been estimated.
- Maximal deposited energy in stationary target for the conventional source is about 2.7 times higher than that for undulator based source.
- Target of conventional source is higher activated than target of undulator based source. For example, equivalent dose rate after 1 hour of cooling time is about 2.5 times higher for conventional source.