Low Energy Positron Polarimetry

Ralph Dollan, HU Berlin

LEPOL - purpose, demands

- Optimization of the positron beam polarization/intensity
- Control of polarization transport

Criteria: (in spite of rather poor beam quality at the source)

- Non destructive
- Reasonable sensitivity to long. Polarization
- Reliability
- Signal / background ratio
- Accuracy few percent

Bhabha-Polarimeter

- E_{beam}: after pre acceleration ~ 400 MeV
- cross section:

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{(1+\cos\theta)^2}{16\gamma^2 \sin^4\theta} \left\{ \left(9+6\cos^2\theta+\cos^4\theta\right) - P_{e^+}P_{e^-} \left(7-6\cos^2\theta-\cos^4\theta\right) \right\}$$

- theor. max. asymmetry bei 90°(CMS)
- ~ 7/9 ≈ 78 %
- example: P_{e+} = 80%, P_{e-} = 7% $A_{max} \sim 4.4$ %

Bhabha-Polarimeter

- E_{beam}: after pre acceleration ~ 400 MeV
- cross section:

$$\frac{d\sigma}{d\Omega} = r_0^2 \frac{(1+\cos\theta)^2}{16\gamma^2 \sin^4\theta} \left\{ \left(9+6\cos^2\theta+\cos^4\theta\right) - P_{e^+}P_{e^-} \left(7-6\cos^2\theta-\cos^4\theta\right) \right\}$$

- theor. max. asymmetry bei 90°(CMS)
 example: P_{e+}= 80%, P_{e-}= 7% A_{max} ~ 4.4 %
- ~ 7/9 ≈ 78 %

- Mask/shielding selects angular range with max. asymmetry
- spectrometer -> particle
 separation, energy selection
- Polarization measurements
 - -> Asymmetry measurements of opposite polarization states of the target

e⁻ produced in the target

- 30 µm magnetized Fe-Foil
- E_{beam} : 400 MeV (10 % spread)
 Ang. Spread : 0.5°

asymmetry (analyzing power)

e- distribution

 $(A_{e^+} \sim 5\%, A_{\gamma} \sim -15\%)$

R. Dollan

e⁻ produced the target

- 30 µm magnetized Fe-Foil
- E_{beam} : 400 MeV (10 % spread)
 Ang. Spread : 0.5°

asymmetry (analyzing power)

e- distribution

-> Asymmetry in the ang. range: A_{e^-} ~50 % $(A_{e^+} \sim 5\%, A_{\gamma} \sim -15\%)$

R. Dollan

not to scale

e⁻ detected

- Distribution of electrons and the asymmetry (analyzing power)
- Target 30 μm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- 2 x 10⁹ positrons on target
- A ~ 55 %

e⁺ detected

- Distribution of positrons and the asymmetry (analyzing power)
- Target 30 μm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- 2×10^9 positrons on target

e- and e+ detected

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- 2 x 10⁹ positrons on target
- A ~ 47%

Crosscheck - zero beam polarization

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- 4×10^8 positrons on target

e⁻ detected (w beam pipe window)

- Distribution of electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- w. beam pipe exit window
- 1.4 × 10⁹ positrons on target
 A ~ 38%

e⁻ and e⁺ detected (w beam pipe window)

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- w. beam pipe exit window
- 1.4 × 10⁹ positrons on target
- A ~ 30%

... and higher statistics

Asymmetry

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- w. beam pipe exit window
- 1.14 × 10¹⁰ positrons on target
- A ~ 41% (RMS 17%)

Compton Transmission Method

- Destructive !
- Polarized positrons reconverted into polarized gammas
- Polarization dependent transmission due to Compton scattering in magnetized Iron
- Working point: E_e⁺ < 100 MeV ideal after capture section O(~30 MeV)

Summary

- Simulation studies for Bhabha polarimeter at 400 MeV are promising ...
- ... with help of a powerful simulation tool (polarized G4) and the experience from E166

Ongoing simulation studies:

- Bhabha Polarimeter preferred and only method
 - high statistics studies with ideal setup
 - analyzing power for real. polarization values (P_{beam} 30(60)% / P_{e} 7%)
 - background studies (optimization of shielding, materials, geometry)
 - implementation of real beam properties
- Compton Transmission Polarimeter
 - high statistics for 35 MeV beam energy and real beam properties

pending

- Magnetized thin IronTarget
- Heating of the target -> Magnetization decreases
 - T_c (Fe) = 1039 K; melting point 1808 K
- ΔT -> ΔM -> ΔP -> ΔA

Magnetisation vs. Temperature

- Magnet design
- Background optimization

Available Processes

- Laser Compton Scattering (ex.: SLC, HERA)
 - High intensity Laser on low emittance beam
 - Only after Damping Rings (Intensity, Energy)
 - High precision
- Bhabha/Møller (ex: SLAC, JLAB, VEPP-3)
 - Thin magnetized Target
 - Suitable for desired energy range
- Compton Transmission (ex.: E166, KEK-ATF Pol. Experiment)
 - Beam absorbed in thick target
 - Very low energy (< 100 MeV)
- Mott
 - Transverse polarized positrons, high background
- Synchrotron radiation (ex.: VEPP-4 storage ring)
 - Transverse polarization
 - Near/in damping ring?
 - Low signal Asymmetry < 10⁻³

e⁺ in detector

- Distribution of positrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- w. beampipe window
- 1.4 x 10⁹ positrons on target

... and high statistics

- Distribution of both, positrons and electrons and the asymmetry (analyzing power)
- Target 30 µm Fe
- E_{beam} 400MeV
- BdL 0.1 Tm
- P(100%/100%)
- w. beam pipe exit window
- 1.14 × 10¹⁰ positrons on target
- A ~ 41%

pol. G4 results