

LLNL Update

Tom Piggott, Jeff Gronberg, Lisle Hagler

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Global Design Effort

Status of LLNL program

- US Congress cuts funding for US ILC in FY08 to 25% of request, 50% of FY07
 - No FY08 funding for LLNL ILC program.
 - Was supposed to be 3 FTE for positron source
 - Perhaps some support in FY09

• Spending out available funds to support Daresbury positron target prototype this year

Work Areas

- Support for the spinning target experiment at Daresbury – as funds are available
 - Rotational and vibrational studies
 - Mechanical stresses
 - Guarding of spinning target
 - Eddy currents

ILL

- Design and simulation of positron source target
 - Mechanical simulations
 - Radiation damage study

Global Design Effort

Experimental Support

- Collaborating with Daresbury Laboratory on the rotating target prototype as funds are available
 - RAL's numbers for stresses in rotating wheel agree with LLNL calculations
 - Design of experimental enclosure
 - Help with analysis of experimental results
 - Validate vibrational calculations

• Validate Eddy current simulations

Design and Simulation of Target

- Single pulse simulations of target show favorable results
- Further simulation needs:
 - Simulating a 'unit cell' of pulses to show repeatability over time
 - Simulation of single pulse using different code with a slightly different formulation
 - Simulation of varying cooling scenarios
 - Simulation look at multi-phase effects in Ti6Al4V
- Further design needs
 - Evaluation of material property changes due to thermal cycling/fatigue, as well as radiation damage
 - Evaluation of water feed-throughs and allowable pressure drops to raise heat transfer to cooling water

- Brian Wirth completed study of radiation damage effects in target material
 - After reformulating the results, damage is much lower-0.1 dpa/year in Ti6Al4V
 - Discrepancies with previous calculations identified
- However, material property changesincreasing strength with loss of ductility need to be considered