

The field cage for the Large TPC-Prototype

DESY FLC TPC Group

Ties Behnke, Klaus Dehmelt, Ralf Diener, Lea Hallermann, Peter Schade

EUDET Setup

BALLOON-BORNE EXPERIMENT WITH A SUPERCONDUCTION MAGNET SPECTROMETER, Akira Yamamoto, KEK, 01.12.94

- infrastructure for TPC R&D, available for many researcher groups
 - \hookrightarrow PCMAG was installed in the e^- test beam in December 2006
 - \hookrightarrow Large TPC-Prototype: $60\,\mathrm{cm}$ long drift volume, $72\,\mathrm{cm}$ inner diameter

- $\circ\,$ operation in the e⁻ test beam $\rightarrow\,$ walls need to be as thin as possible (less than $2\,\%$ of a radiation length)
- \circ homogeneity of the electric field $\Delta E/E < 10^{-4}$

- $\circ\,$ operation in the e^ test beam $\rightarrow\,$ walls need to be as thin as possible (less than $2\,\%$ of a radiation length)
- $\circ~$ homogeneity of the electric field $\Delta {\it E}/{\it E} < 10^{-4}$

 \rightarrow composite materials

- $\circ\,$ operation in the e⁻ test beam $\rightarrow\,$ walls need to be as thin as possible (less than $2\,\%$ of a radiation length)
- \circ homogeneity of the electric field $\Delta E/E < 10^{-4}$

 \rightarrow composite materials

 \rightarrow electrostatic calculations

- operation in the e⁻ test beam \rightarrow walls need to be as thin as possible (less than 2% of a radiation length)
- \circ homogeneity of the electric field $\Delta E/E < 10^{-4}$

 \rightarrow composite materials

 \rightarrow electrostatic calculations

- $\circ\,$ field- and mirror-strips as inner layer
- $\circ\,$ parallelism of anode and cathode at $100\,\mu m$ level

Field strip foil

Field strip foil

Sample pieces of the wall

o different possible cross sections of the investigated with sample pieces
→ high voltage tests up to 30 kV
→ no breakdown in 48 h
→ mechanical tests
→ 4-point bending tests
o final layout has 1.3 % of an radiation length

Sample pieces of the wall

o different possible cross sections of the investigated with sample pieces
→ high voltage tests up to 30 kV
→ no breakdown in 48 h
→ mechanical tests
→ 4-point bending tests
o final layout has 1.3 % of an radiation length

- field strip foil will be put as first layer
 mandrel bas two slip
 - $\,\hookrightarrow\,$ mandrel has two slots

 o field strip foil will be put as first layer
 → mandrel has two slots

- field strip foil will be put as first layer
 - $\,\hookrightarrow\,$ mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil

- field strip foil will be put as first layer
 - \hookrightarrow mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 $\mu {
 m m}$ thick)

- field strip foil will be put as first layer
 - $\,\hookrightarrow\,$ mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 μm thick)
 - → aramid honeycomb and
 end flanges made of a hard foam

- field strip foil will be put as first layer
 - $\,\hookrightarrow\,$ mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 μm thick)
 - → aramid honeycomb and
 end flanges made of a hard foam

- field strip foil will be put as first layer
 - $\,\hookrightarrow\,$ mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 $\mu {
 m m}$ thick)
 - → aramid honeycomb and end flanges made of a hard foam
 - $\,\hookrightarrow\,$ additional thin aramid layer

- field strip foil will be put as first layer
 - $\,\hookrightarrow\,$ mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 μm thick)
 - → aramid honeycomb and
 end flanges made of a hard foam
 - \hookrightarrow additional thin aramid layer
 - \hookrightarrow outer GRP layer (300 μm thick)

- field strip foil will be put as first layer
 - $\, \hookrightarrow \, \text{mandrel has two slots} \,$
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 $\mu {
 m m}$ thick)
 - → aramid honeycomb and end flanges made of a hard foam
 - \hookrightarrow additional thin aramid layer
 - \hookrightarrow outer GRP layer (300 μm thick)
 - $\hookrightarrow \ \text{outer insulation}$
 - (copper covered Kapton foil)

- field strip foil will be put as first layer
 - \hookrightarrow mandrel has two slots
- $\circ~$ in the following layers are laminated:
 - \hookrightarrow high voltage insulation $125\,\mu m$ thick polyimid foil
 - \hookrightarrow inner GRP layer (300 $\mu {
 m m}$ thick)
 - → aramid honeycomb and
 end flanges made of a hard foam
 - \hookrightarrow additional thin aramid layer
 - \hookrightarrow outer GRP layer (300 μm thick)
 - \hookrightarrow outer insulation

(copper covered Kapton foil)

- $\circ\,$ mandrel has an expansion slot
 - \hookrightarrow reduction of the diameter

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - $\,\hookrightarrow\,$ position of slot corrected

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5\,\mathrm{mm}$
 - $\,\hookrightarrow\,$ position of slot corrected
- $\circ\,$ field strip foil mounted

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5\,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ~$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5\,\mathrm{mm}$
 - \hookrightarrow alignment worked well

- mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ\,$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5 \,\mathrm{mm}$
 - \hookrightarrow alignment worked well
- $\circ\,$ Kapton glued onto the foil
- first GRP layer attached

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ\,$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5\,\mathrm{mm}$
 - \hookrightarrow alignment worked well
- $\circ~$ Kapton glued onto the foil
- first GRP layer attached
 - $\hookrightarrow \text{ air inclusions reduced by} \\ \text{under pressure treatment}$

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ\,$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5\,\mathrm{mm}$
 - \hookrightarrow alignment worked well
- $\circ\,$ Kapton glued onto the foil
- $\circ~\mbox{first}~\mbox{GRP}~\mbox{layer}~\mbox{attached}$
 - \hookrightarrow air inclusions reduced by under pressure treatment
- $\circ\,$ epoxy is tempered at $60\,^{\circ}\mathrm{C}$

- mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ\,$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5\,\mathrm{mm}$
 - \hookrightarrow alignment worked well
- $\circ~$ Kapton glued onto the foil
- first GRP layer attached
 - $\hookrightarrow \text{ air inclusions reduced by} \\ \text{under pressure treatment}$
- $\circ\,$ epoxy is tempered at $60\,^{\rm o}{\rm C}$
- flange machined and glued onto the GRP layer

- $\circ\,$ mandrel made of aluminium
 - \hookrightarrow diameter: $\Delta d \approx 0.5 \,\mathrm{mm}$
 - \hookrightarrow position of slot corrected
- $\circ\,$ field strip foil mounted
 - \hookrightarrow remaining slot $< 0.5\,\mathrm{mm}$
 - \hookrightarrow alignment worked well
- $\circ~$ Kapton glued onto the foil
- first GRP layer attached
 - $\hookrightarrow \text{ air inclusions reduced by} \\ \text{ under pressure treatment}$
- $\circ\,$ epoxy is tempered at $60\,^{\circ}\mathrm{C}$
- flange machined and glued onto the GRP layer
- $\circ\,$ construction is expected to be finished this week
- $\circ~$ field cage will be available at DESY end of June

Construction of a cathode

- cathode made of aluminium
 - \hookrightarrow electroplated with copper
 - \hookrightarrow a pattern can be machined into the surface
- will be mounted on an intermediate flange
- three adjustable screws carry the cathode plate
 - \hookrightarrow correct placement of cathode surface
 - $\hookrightarrow \mathsf{adjustment} \mathsf{ of parallelism}$
- cathode plate ready, construction of intermediate flange soon

Conclusion

- field cage for a Large TPC-Prototype for the ILC as a part of an EUDET infrastructure
- construction of the chamber ongoing
- $\circ\,$ a first cathode is under preparation
- chamber available in June
 - $\, \hookrightarrow \, \, \text{HV-tests} \,$
 - $\, \hookrightarrow \, \text{gas tests} \,$
- $\circ\,$ a first anode plate is under construction at the university of Cornell
- measurements in the test beam starting in September

EUDET Setup

- infrastructure for TPC R&D, available for many researcher groups
 - $\,\hookrightarrow\,$ PCMAG was installed in the e^- test beam in December 2006
 - \hookrightarrow Large TPC-Prototype: $60\,\mathrm{cm}$ long drift volume, $72\,\mathrm{cm}$ inner diameter
 - \hookrightarrow among others: studies for TPC-operation in inhomogeneous fields planned

Pull out tests of inserts

- $\circ~$ force requested to compress the O-ring
 - $\,\hookrightarrow\, 1.2\,kN$ per insert, with safety: $3.6\,kN$
- self made inserts

