New SUSY and Higgs predictions for the ILC

Sven Heinemeyer, IFCA (Santander)

Warsaw, 06/2008

based on collaborations with X. Miao, S. Su and G. Weiglein

- 1. Motivation and models
- 2. The observables
- 3. Implications for the ILC
- 4. Conclusions

1. Motivation and models

Let's assume that low-energy SUSY is realized in Nature

What do we know about the SUSY mass scale?

- 1. Coupling constant unification $\Rightarrow M_{SUSY} \approx 1 \text{ TeV}$
- 2. Solution for the Hierarchy problem $\Rightarrow M_{SUSY} \lesssim 1 \text{ TeV}$
- 3. Indirect hints from existing data?
 - Electroweak precision observables (EWPO) ?
 - *B* physics observables (BPO) ?
 - Cold dark matter (CDM) ?

\Rightarrow combination of EWPO, BPO, CDM ?

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

EW Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, a_{\mu}$$
Theory:
SM, MSSM , ... \downarrow

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Within the SM: fit for the last unknown parameter: M_H^{SM}

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 150~{\rm GeV}$

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?
 - \Rightarrow combination of EWPO, BPO, CDM ?

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ...

Indirect hints on M_{SUSY} from existing data?

- Electroweak precision observables (EWPO) ?
- *B* physics observables (BPO) ?
- Cold dark matter (CDM) ?

 \Rightarrow combination of EWPO, BPO, CDM ?

EWPO M_W : information on $m_{\tilde{t}}$, $m_{\tilde{b}}$ or M_A , $\tan \beta$ or ... EWPO $(g-2)_{\mu}$: information on $\tan \beta$ and/or $m_{\tilde{\chi}^0}$, $m_{\tilde{\chi}^{\pm}}$ and/or $m_{\tilde{\mu}}$, $m_{\tilde{\nu}_{\mu}}$ BPO BR $(b \rightarrow s\gamma)$: information on $\tan \beta$ and/or $M_{H^{\pm}}$ and/or $m_{\tilde{t}}$, $m_{\tilde{\chi}^{\pm}}$ CDM (LSP gives CDM): information on $m_{\tilde{\chi}^0_1}$ and $m_{\tilde{\tau}}$ or M_A or ...

 \Rightarrow combination makes only sense if all parameters are connected! \Rightarrow GUT based models, . . . Existing analyses for GUT based models: (involving precision observables)

CMSSM/mSUGRA:

[J. Ellis, S.H., K. Olive, G. Weiglein '04, '06, '07]

[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07]

[R. de Austri, R. Trotta and L. Roszkowski '06, '07]

[B. Allanach, C. Lester and A.M. Weber '06, '07]

[O. Buchmueller et al. '07]

NUHM:

[J. Ellis, S.H., K. Olive, G. Weiglein '06]
[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07]
[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

VCMSSM:

[J. Ellis, S.H., K. Olive, G. Weiglein '06]

mSUGRA (GDM): [J. Ellis, S.H., K. Olive, G. Weiglein '06] Existing analyses for GUT based models: (involving precision observables)

CMSSM/mSUGRA:

[J. Ellis, S.H., K. Olive, G. Weiglein '04, '06, '07]

[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07]

[R. de Austri, R. Trotta and L. Roszkowski '06, '07]

[B. Allanach, C. Lester and A.M. Weber '06, '07]

[O. Buchmueller et al. '07]

NUHM:

[J. Ellis, S.H., K. Olive, G. Weiglein '06]
[J. Ellis, S.H., K. Olive, A.M. Weber, G. Weiglein '07]
[J. Ellis, T. Hahn, S.H., K. Olive, G. Weiglein '07]

VCMSSM:

[J. Ellis, S.H., K. Olive, G. Weiglein '06]

mSUGRA (GDM): [J. Ellis, S.H., K. Olive, G. Weiglein '06]

 \Rightarrow analyses in other GUT based models are missing!

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 $\begin{array}{c} m_0: \text{ universal scalar mass parameter} \\ m_{1/2}: \text{ universal gaugino mass parameter} \\ A_0: \text{ universal trilinear coupling} \\ \tan\beta: \text{ ratio of Higgs vacuum expectation values} \\ \text{sign}(\mu): \text{ sign of supersymmetric Higgs parameter} \end{array}$

 \Rightarrow particle spectra from renormalization group running to weak scale Lightest SUSY particle (LSP) is the lightest neutralino "Typical" CMSSM scenario

(SPS 1a benchmark scenario):

SPS home page:

www.ippp.dur.ac.uk/~georg/sps

The models: 2.) (minimal) gauge mediated SUSY breaking: mGMSB

GMSB scenario characterized by

 $M_{\text{mess}}, N_{\text{mess}}, \Lambda, \tan\beta, \operatorname{sign}(\mu)$

 M_{mess} : messenger mass scale

 N_{mess} : messenger index (number of messenger multiplets)

 $\Lambda = \langle F \rangle / M_{mess}$: universal soft SUSY breaking mass scale felt by low-energy sector

LSP is always the gravitino next-to-lightest SUSY particle (NLSP): $\tilde{\chi}_1^0$ or $\tilde{\tau}_1$

can decay into LSP inside or outside the detector

GMSB scenario with $\tilde{\tau}$ NLSP

(SPS 7 benchmark scenario):

The models: 3.) (minimal) anomaly mediated SUSY breaking: mAMSB

Parameters:

 $m_{aux}, m_0, \tan\beta, \operatorname{sign}(\mu)$

SPS9:

typical feature: very small neutralino–chargino mass difference

$$\Rightarrow \tilde{\chi}_1^{\pm} \to \tilde{\chi}_1^0 + \pi^{\pm}$$

with very soft pions

Procedure:

- 1. Scan over full parameter space:
 - CMSSM: $m_{1/2}$, m_0 , A_0 , tan β
 - mGMSB: Λ , M_{mess} , N_{mess} , tan β
 - mAMSB: m_{aux} , m_0 , tan β

 $\mu > 0$ (anomalous magnetic moment of the muon)

- 2. Perform χ^2 fit with precision observables
- 3. Find preferred values for masses \Rightarrow ILC reach
 - \Rightarrow comparison of models
 - \Rightarrow distinction of models?

2. The observables

1./2.) M_W , $\sin^2 \theta_{\text{eff}}$:

1.) Theoretical prediction for M_W in terms

of
$$M_Z, \alpha, G_\mu, \Delta r$$
:

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} (1 + \Delta r)$$
loop corrections

2.) Effective mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 \left| Q_f \right|} \left(1 - \text{Re} \frac{g_V^f}{g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

M_W : CMSSM vs. mGMSB vs. mAMSB

 $\sin^2 \theta_{\text{eff}}$: CMSSM vs. mGMSB vs. mAMSB

3.) anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Overview about the current experimental and SM (theory) result: [g-2 Collaboration, hep-ex/0401008]

 \rightarrow ''Isospin breaking effects'' in τ data problematic

[Ghozzi, Jegerlehner '03; Jegerlehner '07]

 e^+e^- data: good agreement between new SND, CMD2, KLOE data

 $a_\mu^{\mathsf{exp}} - a_\mu^{\mathsf{theo},\mathsf{SM}} pprox$ (27.5 \pm 8.4) imes 10⁻¹⁰

$(g-2)_{\mu}$: CMSSM vs. mGMSB vs. mAMSB

$\Rightarrow \mu < 0$ disfavored in all scenarios

Sven Heinemeyer, LCWS Warsaw, 11.06.2008

4.) the lightest MSSM Higgs boson mass: M_h

Contrary to the SM: M_h is not a free parameter

MSSM tree-level bound: $M_h < M_Z$, excluded by LEP Higgs searches

Large radiative corrections:

Dominant one-loop corrections:

$$\Delta M_h^2 \sim G_\mu m_t^4 \log\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right)$$

The MSSM Higgs sector is connected to all other sector via loop corrections (especially to the scalar top sector)

Measurement of M_h , Higgs couplings \Rightarrow test of the theory

LHC: $\Delta M_h \approx 0.2 \text{ GeV}$ ILC: $\Delta M_h \approx 0.05 \text{ GeV}$

 $\Rightarrow M_h$ will be (the best?) electroweak precision observable

M_h : CMSSM vs. mGMSB vs. mAMSB

In CMSSM, mGMSB, mAMSB:

SM bound of M_H search can be used [LEP Higgs Working Group '03]

In CMSSM, mGMSB, mAMSB:

SM bound of M_H search can be used [LEP Higgs Working Group '03]

6.) BR($B_s \rightarrow \mu^+ \mu^-$)

 $BR(B_s \rightarrow \mu^+ \mu^-)$ CMSSM vs. mGMSB vs. mAMSB

Cold Dark Matter constraint:

- \rightarrow well justified in CMSSM
- \rightarrow situation is ''unclear'' for mGMSB and mAMSB

Too few DM:

 \Rightarrow other particles can make up the DM

Too high DM density:

 \Rightarrow various solutions possible:

- small amount of R-parity violation
- small change in cosmology of the early universe
- "thermal inflation", "late time entropy injection"

Cold Dark Matter constraint:

- \rightarrow well justified in CMSSM
- \rightarrow situation is ''unclear'' for mGMSB and mAMSB

Too few DM:

 \Rightarrow other particles can make up the DM

Too high DM density:

 \Rightarrow various solutions possible:

- small amount of $R\mbox{-}parity$ violation
- small change in cosmology of the early universe
- "thermal inflation", "late time entropy injection"

We want to treat CMSSM, mGMSB, mAMSB on equal footing!

 \Rightarrow CDM constraint is left out in our analysis!

3. Implications for the ILC

Procedure:

- 1. Scan over full parameter space:
 - CMSSM: $m_{1/2}$, m_0 , A_0 , tan β
 - mGMSB: Λ , M_{mess} , N_{mess} , tan β
 - mAMSB: m_{aux} , m_0 , tan β

 $\mu > 0$ (anomalous magnetic moment of the muon)

- 2. Perform χ^2 fit with precision observables
- 3. Find preferred values for masses
 - \Rightarrow ILC reach
 - \Rightarrow comparison of models
 - \Rightarrow distinction of models?

How good is the fit?

	CMSSM	mGMSB	mAMSB
$\chi^2_{\sf min}$	4.6	5.1	2.9
M_W	1.7	2.1	0.6
$\sin^2 heta_{ m eff}$	0.1	0.0	0.8
$(g-2)_{\mu}$	0.6	0.9	0.0
$BR(b o s \gamma)$	1.1	2.0	1.5
M_h	1.1	0.1	0.0
$BR(B_s \to \mu^+ \mu^-)$	$4.5 imes 10^{-8}$	3.2×10^{-8}	$0.4 imes 10^{-8}$
M_A [GeV] (best-fit)	394	547	616
tan β (best-fit)	54	55	9

 \Rightarrow good fit results

 \Rightarrow mAMSB fits best (but not significantly)

Results: fit in the M_A -tan β plane

 $\Rightarrow \Delta \chi^2 < 9 \text{ hardly constrains the parameter space}$ upper limit on M_A at $\Delta \chi^2 < 4$ M_A still mostly outside the ILC(1000) reach tan β only mildly restricted

Results: lightest neutralino vs. χ^2_{tot}

 $\Rightarrow m_{\tilde{\chi}_1^0} \lesssim 500 \text{ GeV at } \Delta \chi^2 < 4$ $\Rightarrow \text{ pair production possible}$ CMSSM, mAMSB: detection via $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$? mGMSB: graviton is LSP, detection via $\tilde{\chi}_1^0 \rightarrow \tilde{G} + X$?

Results: second lightest neutralino vs. χ^2_{tot}

 $\Rightarrow m_{\tilde{\chi}^0_2} \lesssim 800-900~{\rm GeV}$ at $\Delta\chi^2 < 4$

⇒ pair production difficult, $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$? detection via $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 + X$?

Results: lightest chargino vs. χ^2_{tot}

⇒ $m_{\tilde{\chi}_1^{\pm}} \lesssim 300, 800, 900 \text{ GeV}$ at $\Delta \chi^2 < 4$ for mAMSB, CMSSM, mGMSB mAMSB: $e^+e^- \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ easy $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} = \mathcal{O}(100 \text{ MeV}) \Rightarrow \text{special problems}$ CMSSM, mGMSB: part of parameter space accessible

Results: lightest scalar tau vs. χ^2_{tot}

⇒ $m_{\tilde{\chi}_1^0} \lesssim 500, 500, 1000 \text{ GeV}$ at $\Delta \chi^2 < 4$ for CMSSM, mAMSB, mGMSB mGMSB, mAMSB: $e^+e^- \rightarrow \tilde{\tau}_1\tilde{\tau}_1$ possible CMSSM: possibly too heavy for ILC(1000) but better if CDM is taken into account

 $\Rightarrow m_{\tilde{t}_1} \gtrsim 500 \text{ GeV}$ at $\Delta \chi^2 < 4$ mGMSB, mAMSB: $e^+e^- \rightarrow \tilde{t}_1\tilde{t}_1$ not possible CMSSM: part of parameter space accessible lightest sbottom similar, gluino even heavier

Results: "blue band" for M_h (without LEP results)

CMSSM, mGMSB:

leaving out the LEP constraints substantially lowers the total χ^2

 M_h around $\sim 105~{\rm GeV},$ but still compatible with LEP bound

CMSSM: better if CDM is taken into account

mAMSB: well compatible with LEP constraint

4. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- Most important electroweak precision observables:

 M_W , $\sin^2 \theta_{\rm eff}$, M_h , $(g-2)_\mu$

Most important B physics observables:

 $\mathsf{BR}(b \to s\gamma), \; \mathsf{BR}(B_s \to \mu^+ \mu^-)$

- models under consideration: CMSSM, mGMSB, mAMSB
- Current χ^2 fit: CMSSM: $\chi^2_{min} =$ 4.6, mGMSB: $\chi^2_{min} =$ 5.1, mAMSB: $\chi^2_{min} =$ 2.9
- Evaluation of SUSY spectrum \Rightarrow ILC(1000) reach
 - some neutralinos/charginos are in reach
 - good chances for scalar tau
 - colored particles mostly too heavy some chances for lightest stop in CMSSM

4. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- Most important electroweak precision observables:

 M_W , $\sin^2 \theta_{\rm eff}$, M_h , $(g-2)_\mu$

Most important B physics observables:

 $\mathsf{BR}(b \to s\gamma), \; \mathsf{BR}(B_s \to \mu^+ \mu^-)$

- models under consideration: CMSSM, mGMSB, mAMSB
- Current χ^2 fit: CMSSM: $\chi^2_{min} =$ 4.6, mGMSB: $\chi^2_{min} =$ 5.1, mAMSB: $\chi^2_{min} =$ 2.9
- Evaluation of SUSY spectrum \Rightarrow ILC(1000) reach
 - some neutralinos/charginos are in reach
 - good chances for scalar tau
 - colored particles mostly too heavy some chances for lightest stop in CMSSM

The prospects for the ILC(1000) to see SUSY are good!