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Standard rough picture: After Big Bang the temperature of the Uni-
verse T was high, in this stage vacuum expectation values of Higgs
fields are given by minimum of the Gibbs potential Φ = V (φ)+aT2φ2,
where V (φ) is the Higgs potential, — Higgs model with mass parame-
ters varying in time. At large T potential has EW symmetric minimum
at 〈φ〉 = 0. This stage describes the phenomenon of inflation.
During the inflatory expansion, the Universe refrigerates, at some
temperature the Gibbs potential transforms effectively into the well
known form of the Higgs model with 〈φ〉 6= 0 – we obtain our world
with massive particles, etc.

φ
t ≈ 0

⇒

t > tc

This EWSB phase transi-

tion determines the fate of

the Universe after inflation.
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The potential of 2HDM and evolution
of its form

The Two Higgs Doublet Model (2HDM) – the simplest extension

of the minimal SM for description of EWSB – contains two scalar

weak isodoublets φ1 and φ2 with identical hypercharge. Isoscalar

combinations of the field operators

x1 = φ
†
1φ1, x2 = φ

†
2φ2, x3 = φ

†
1φ2 , x3∗ ≡ x

†
3 = φ

†
2φ1 .

The most general renormalizable Higgs potential is

V = −1

2

[
m2

11x1 + m2
22x2 +

(
m2

12x3 + h.c.
)]

+

+
λ1x2

1+λ2x2
2

2
+λ3x1x2+λ4x3x

†
3+

[
λ5x2

3

2
+λ6x1x3+λ7x2x3+h.c.

]
.
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Temperature dependence
At high temperature we define instead of potential V

the Gibbs potential VG = Tr
(
V e−Ĥ/T

)
/Tr

(
e−Ĥ/T

)
≡ V + ∆V . .

The first correction to potential is given by tadpole diagram.

�λ

It is calculated with Matsubara dia-

gram technic. At T À m2
i each loop

contribute as gT2 where g is some co-

efficient. In our case we have

∆m2
11 = (3λ1 + 2λ3 + λ4)gT2 , ∆m2

22 = (3λ2 + 2λ3 + λ4)gT2 ,

∆m2
12 = 2(λ6 + λ7)gT2 .

This variation allow to see evolution of vacuum during cooling of
Universe. This evolution can influence for current state of Universe .

First goal: To see possible scenarios of evolution of Universe
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For representative discussion –
explicitly CP-conserving potential with softly broken Z2 symmetry,

Useful notations (for definiteness we take k > 1)

λ1 = λ , λ2 = k4λ , λ3 = λρ3 , λ4 = ρ4λ , λ5 = ρ5λ ,

m2
11 = m2(1 + δ) , m2

22 = k2m2(1− δ) , m2
12 = µm2, λ6,7 = 0.

At δ = 0 our potential has an extra symmetry which we denote here
as ZK symmetry

φ1 ↔ k φ2 .

During evolution, system can pass through this symmetry point
possibly providing new types of phase transitions
We present many equations for the case of weak violation of ZK
symmetry – δ ¿ 1 .
In the forthcoming discussion we assume that λi are not large, so that
perturbative approach can be used.
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Useful quantities

The scales of field and energy values at the extremum points, similar

to SM

Y = m2/(2λ) , ε = m4/(8λ) .

Y0, ε0 – modern values of the same quantities (at T = 0)

We use

ρ345 = ρ3 + ρ4 + ρ5, ρ̃345 = ρ3 + ρ4 − ρ5.
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Types of possible extremes of potential

The extrema of the potential define the values 〈φ1,2〉 of the fields φ1,2

via equations:

∂V/∂φi|φi=〈φi〉 = 0 , ∂V/∂φ
†
i |φi=〈φi〉 = 0 .

These equations have the electroweak symmetry conserving (EWc)

solution 〈φi〉 = 0 and the electroweak symmetry breaking (EWSB)

solutions.

The extremum energy is

Eext
N = V (〈φi〉N) .
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For each EWSB extremum one can choose the z axis in the weak

isospin space so that 〈φ1〉 =

(
0
v1

)
with real v1 > 0 (”neutral direc-

tion”). The residuary 〈φ2〉 has generally an arbitrary form ⇒ After

this choice the most general electroweak symmetry violating solution

of extremum condition can be written in a form with real v1 and

complex v2

〈φ1〉 =
1√
2

(
0
v1

)
, 〈φ2〉 =

1√
2

(
u
v2

)
with v1 = |v1|, v2 = |v2|eiξ .

It is natural to distinguish two types of extrema, with Z 6= 0 (charged

extrema, u 6= 0) and with Z = 0 (neutral extrema, u = 0).

8



I. Charged extremum, u 6= 0

If this extremum realizes the vacuum, it is not possible to split the

gauge boson mass matrix into the neutral and charged sectors, the

interaction of gauge bosons with fermions will not preserve electric

charge, photon becomes massive, etc. Certainly, this case is not

realized in our World. But in the past?

This extremum is defined by parameters of potential unambiguously

only in some limited region of parameters of potential, for our poten-

tial

Eext
ch = −2ε

(
k2

k2 + ρ3
+

µ2

ρ4 + ρ5
+ δ2

k2

k2 − ρ3

)
.

If charged extremum is minimum, it is global one – vacuum
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Neutral extrema, u = 0. General

Other extrema obey a condition for U(1) symmetry of electromag-

netism:

〈φ1〉=
1√
2

(
0
v1

)
, 〈φ2〉=

1√
2

(
0

v2 = |v2|eiξ

)
,

another parameterization: v1 = v cosβ , v2 = v sinβ .

The physical Higgs bosons in one of extrema can have definite CP

parity if only potential can be written in explicitly CP conserving form

(with all real λi, m2
ij) (Haber, Gunion; IFG, Krawczyk). We consider

here this very case.
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Model contains two fields with identical quantum numbers

⇒ pure Higgs sector can be described both in terms of fields φk,

and in terms of fields φ′k obtained from φk by a generalized rotation

The correspondent transformations form SO(3,1) group, the same as

rotation group of Minkowski space. It allows to use in general analysis

geometrical approach. (I.P. Ivanov. Phys. Lett B632 (2006) 360;

Phys. Rev. D75 (2007) 035001).

The geometrical description of the most general case shows that

the results obtained for presented representative model are practically

exhaustive.
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II. Spontaneously CP violating extremum, ξ 6= 0.

In this case v1, v2 and cos ξ are described by parameters of the po-
tential unambiguously.
The physical neutral Higgs states have no definite CP parity. This
extremum is doubly degenerated in the ”direction” of CP violation.
At small δ

v2
1 =

2Y k2

k2 + ρ̃345
, v2

2 =
2Y

k2 + ρ̃345
, tanβ =

1

k

(
1− δ

k2 + ρ̃345

k2 − ρ̃345

)
,

cos ξ =
µ

(
k2 + ρ̃345

)

2kρ5
;

Eext
sCPv = −ε

(
2

k2

k2 + ρ̃345
+

µ2

ρ5
+ 2δ2

k2

k2 − ρ̃345

)
.

This extremum can be minimum of potential if only ρ5 > 0.

12



With radiative (loop) corrections (RC) main qualitative features of
obtained picture are changed weakly. These corrections are essential
if they violate some artificial symmetry of the potential. In our case
that is its explicitly CP conserving form. Radiative corrections contain
contributions e.g. of light quarks, having imaginary parts for the
considered mass interval.
The simplest example — correction to λ5, obliged by b-quark. Rough
estimate gives additional Imλ5 . (mb/v)4(mb/Mh)

2 ∼ 10−10, where
factors mb/v are from Yukawa coupling and factor (mb/Mh)

2 – from
loop integral itself.
These imaginary parts eliminate degeneracy of the sCPv extrema in
accordance with the arrow of time, and it is natural to
expect that the energy difference between these two states is small –
we deal with almost degenerate states. In simple words, one can
write that the phase with left violation of CP is real vacuum.
The corresponding corrections to other extrema are negligible.
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III. CP conserving (CPc) extrema

In this case equation for extremum written for t = tanβ and v2
i have

form

µ(k4t4 − 1) + t
[
(k2t2 − 1)(k2 − ρ345) + δ (k2t2 + 1)(k2 + ρ345)

]
= 0 ,

v2
1 = 2Y

1 + δ + tµ

1 + ρ345t2
, v2

2 = t2v2
1 .

Generally this equation has 4 solutions. We classify them by the case

of precise ZK symmetry (δ = 0).
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Solutions A±

At δ = 0 : t = tA0± = ±1

k
, v2

1 = 2Y
k(k ± µ)

k2 + ρ345
, v2

2 =
v2
1

k2
;

at δ ∼ 0 : t = tA± = ±1

k

[
1− δ

k2 + ρ345

k2 ± 2kµ− ρ345

]
.

Necessary condition for realization of extremum A± is k ± µ + δ > 0.

One can see that at µ > 0 the extremum A+ is more deep than A−
and at µ < 0 the extremum A− is more deep than A+:

ECPcA± = −2ε
(k ± µ)2 + kδ · (k ± µ)

k2 + ρ345
.
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Solutions B±
At δ = 0 we have

t = tB0± =
ρ345 − k2 ±

√
(ρ345 − k2)2 − 4µ2k2

2µk2
;

v2
1± =

Y

2


1∓

√√√√1− 4µ2k2

(ρ345 − k2)2


 , v2

2± =
v2
1∓
k2

.

The states B+ and B− are degenerated in energy

ECPcB± = −ε

[
1 +

2µ2

ρ345 − k2

]
.

This degeneracy is broken at δ 6= 0.

16



At k 6= 1 solutions B+ and B− describe quite different physics.

• v2 = v2
1 + v2

2 are different ⇒ MW and MZ are different.

• Yukawa couplings ⇒ fermion masses are different.

These phenomena shift degeneracy point in δ.

At the temperature variation near the point of ZK symmetry

the system exhibits first order phase transition with stepwise

variation of order parameter (v1, v2) and particle masses.

Certainly, the transition point is shifted due to EW and Yukawa cor-

rections in potential but the phenomenon of the first order transition

will take place. We expect that the transition latent heat will appear

in this approximation.
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1. Toy potential with k = 1, δ = 0, ρ3 = 1, ρ4 = 0

Phase diagram
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Vacuum states in the plane κr = µ (vertical axis) — κ = ρ5 (hori-

zontal axis). Left plot: m2 > 0, right plot: m2 < 0.

Arrows – evolution of vacuum states during cooling of Universe
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the CPC phases B at high and low temperatures are different like
in the case with 1-st order transition, physical properties changes
quickly.
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GOALS FOR FUTURE WORK

• To determine possible values of parameters of 2HDM, measurable

at LHC, ILC, corresponding to different scenarios.

• Which quantities must be measured at LHC, ILC and with what

precision for choice of one scenario?
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For example

The ZK symmetry reaches at the temperature TZK, obtained from

modern values of parameters via equation, describing δ = 0:

m2
11,0 −m2

22,0

√
λ1/λ2 = gT2

ZK(1−
√

λ1/λ2)
[
3λ1 − (2λ3 + λ4)

√
λ1/λ2

]
.

Condition T2
ZK > 0 limits range of parameters allowing 1-st order

phase transition in the earlier history of an Univerese.
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