Higgs Recoil Mass and Cross Section Measurements

Manqi Ruan^{1,2}, Hengne Li¹

Francois Richard¹, Zhiqing Zhang¹, Yuanning Gao², Roman Poeschl¹

¹ LAL ORSAY

² Tsinghua University

OUTLINE

- Motivation
- Software Chain
- General Remarks
- ZH->µµX Results M. Ruan
- ZH->eeX Current Status H. Li
- Summary

Motivation

- Higgs-Strahlung Process:

- Higgs Recoil Mass:

$$m_{h^0}^2 = s + m_{Z^0}^2 - 2E_{Z^0}\sqrt{s}$$

- Cross Section and Coupling Strength Measurement:

$$g^2 \propto \sigma = N/L\epsilon$$

- Using only information of final state leptons

Although the Cross Section is not at the peak for Ecm = 230GeV, but if we consider the resolution of the recoil mass and the cross section, we will find 230GeV is optimal

0.008

0.007 [Ve2] M

0.004

220

2

F. Richard $E_{CM} = 230 \; GeV$ $M_{Higgs} = 120 \; GeV$

June 11, 2008

General Remarks

Different Nature of muon channel and electron channel

Muon Channel Golden Channel

Advantages:

- less detector material dependence
- Perfect Tracking Resolutions
- no need to worry too much about the bremsstrahlung

Efforts Before Analysis:

• not much

Efforts of Analysis:

- Pre-cuts are safe
- Signal Selection: increase S/N ratio

Electron Channel

Disadvantages:

- sensitive detector material dependence
- Bad Tracking resolutions
 - can NEVER as good as muons!
- Painful nature of bremsstrahlung

Efforts Before Analysis:

• Tracking of electrons: a big story

Efforts of Analysis:

- Pre-cuts affect the results: not safe
- Only full simulation can comparable with data: more efforts
- Signal Selection: increase S/N ratio

ECFA2008

June 11, 2008

Software Chain

• Event Generation:

- Beam Simulation: GUINEA-PIG
- Signal :
 - ZH->μμX: WHIZARD
 - ZH->eeX: PYTHIA
- Backgrounds: PYTHIA

• Simulation:

- Full simulation: GEANT4 (Mokka)
- Detector model:
 - Muon Channel: LDC01Sc
 - Electron Channel: LDC01Sc/ LDCPrime_02Sc

• Reconstruction:

- Muon Channel:
 - FullLDCTracking (A. Raspereza)
 - Wolf (A. Raspereza)
- Electron Channel:
 - FullLDCTracking (A. Raspereza)
 - PandoraPFA (M. Thomson)

• Analysis:

• ROOT, RooFit

Muon Channel

Signal and Backgrounds Considered

Process	Cross Section* (fb)	Preselected** (%)
hZ	6.62	90.6
ZZ	1 340	2.6
WW	15 860	1.0
qq	57 600	0.12
γ/Z->μμ(γ)	5 380	0.86

- *The cross section numbers are given for unpolarized beams
- **To generate efficiently 500 fb⁻¹ MC samples, apply preselection cuts:
 - E_{1,2} > 15GeV (particles 1 and 2 have opposite charge)
 - $M_{12} > 70 \text{ GeV}$
 - φ₁₂ < 177.6°
 - $2E_1 + E_2 < 180 \text{ GeV } \& 2E_1 + 3E_2 > 200 \text{ GeV}$

Muon Channel

Model Independent Analysis/Results

Process	N _{preselected}	N _{selected} *		$m = 110.002 \pm 0.028 \text{ GeV}$
hZ	3.0k	2.1k	-> Eff.=63%	$m_{\rm H} = 119.992 \pm 0.038 {\rm GeV}$ $\sigma = 6.53 {\rm fb} \pm 0.35 {\rm fb}$
ZZ	17.7k	7.8k		$0 = 0.3510 \pm 0.3510$
WW	81.9k	4.3k	AP 250	Ţ
qq	34.6k		us/200	• Total ZH (Signal)
μμ(γ)	23.1k	5.2k	200 -	$\square \qquad \square \qquad$
 Final s Muon I 83 < M φ -0.99 P_T > 15 	election cuts: 1D $f_{12} < 98 \text{ GeV}$ $f_{12} < 175^{\circ}$ $\cos\theta_{12} < -0.3$ 1 GeV			
•••••			116 118 1	20 122 124 126 128 130 132 134 m _H /GeV

6

June 11, 2008

Muon Channel

Further (Model Dependent) Analysis

Using Higgs decay final state to improve the background rejection Two possibilities studied:

1) SM-like Higgs boson - N_{track} > 2

2) Dominant invisible decay mode - N_{track} < 4

June 11, 2008

Electron Channel Remarks on Electrons

• The painful nature of electrons: Bremsstrahlung!!

- Pre-cuts applied on muon channel are not safe for electrons!
 - e.g. recoil mass of ee->ee (red), will shift into the signal window (black).
- Solution:
 - Step 1: Event Weights
 - Step 2: Evaluated which pre-cuts are safe

Electron Channel

Cross Section Evaluation

	Process	σ [fb](N_{EVT})		
		Ρυτηια	WHIZARD	BHWIDE
Signal	$e^+e^- \rightarrow Z^0 h^0 \rightarrow e^+e^- X$	6.31(3155)	6.34(3170)	
Background	$e^+e^- \to e^+e^-\gamma_s{}^{\scriptscriptstyle (1)}$	2531[pb]		2408[pb]
		(1.266×10^9)		(1.204×10^9)
	$e^+e^- \to \tau^+\tau^- \to e^+\nu_e\bar{\nu}_\tau e^-\bar{\nu}_e\nu_\tau$	4753.5		
		(2.376×10^6)		
	$e^+e^- \rightarrow W^+W^- \rightarrow e^+\nu_e e^-\bar{\nu}_e$	189.7(94850)		
	$e^+e^- \rightarrow Z^0 Z^0 \rightarrow e^+e^- f \bar{f}^{_{2)}}$	120.72(60360)		
	$e^+e^- \to Z^0 Z^0 \to e^+e^-e^+e^{-3}$	2.836(1418)		

- Results considered beamstrahlung, ISR and FSR, for E_{cm} =230GeV

- Backgrounds, angular acceptance of $|\cos\theta| < 0.996$ is considered in the cross section evaluation: <u>ONLY!</u>

- Signal, the fraction of final state two electrons within angular acceptance is 0.989

- Expected N_{EVT} is for an integrated luminosity of 500 fb⁻¹

¹⁾ Including both γ^* and Z^0 neutral currents, where, PYTHIA considers only t-channel exchange, while BHWIDE considers both t-channel and s-channel exchanges.

²⁾ $f\bar{f}$ here excludes $Z^0 \rightarrow e^+e^-$.

³⁾ At least one pair of the final state e^+e^- within the angular acceptance range.

Electron Channel

Event Weight: Safely Reduce the Simulation Amount

- Since the pre-cuts in generator level is not safe, Event Weight can be one way to reduce the simulation amount safely.
- e.g. Divide the ee->ee background into four parts:
 - I: $m_{recoil} > 90 \text{GeV}$ and $\min |\cos\theta| < 0.8$ II: $m_{recoil} > 90 \text{GeV}$ and $\min |\cos\theta| > 0.8$ III: $m_{recoil} < 90 \text{GeV}$ and $\min |\cos\theta| < 0.8$ IV: $m_{recoil} < 90 \text{GeV}$ and $\min |\cos\theta| > 0.8$
- Simulate 100k events for each division
- Apply Event Weights: (in the form)
- Then, statistics are enough

Backgr	ounds	Divisions					
		Ι	I II III IV				
$e^+e^-(\gamma_s)$	fraction	9.22×10^{-5}	1.9505×10^{-3}	1.60028×10^{-2}	0.9821253		
	weight	1.167	24.693	202.595	12433.706		

10

Electron Channel Variables For Signal Selection

Signal Selection Variables:

- Kinematic

- Angular

Kinematic Variables:

10k events for each type of reactions All the plots are in log view.

June 11, 2008

Electron Channel Variables For Signal Selection

All these Kinematic and Angular Variables can be used later on for signal selection : 1) Cuts ; 2) Likelihood

Angular Variables:

June 11, 2008

Summary

- Ecm=230GeV is a good choice
- ZH->μμX Analysis M. Ruan
 - Wise and Sophisticated Cut Study gains good resolution of Recoil Mass and Cross Section measurements
 - Model Independent: $\delta(m_h) \sim 38 MeV$, $\delta(\sigma) \sim 0.35 fb$
 - SM Decay: $\delta(m_h) \sim 29 MeV$, $\delta(\sigma) \sim 0.24 fb$
 - Invisible Decay: $\delta(m_h) \sim 29 \text{MeV}, \delta(\sigma) \sim 0.25 \text{fb}$
- ZH->eeX Analysis H. Li
 - Pre-cuts are not safe for electrons: Bremsstrahlung
 - Event weight method applied
 - Various variables for signal selection are studied in generator level
 - Large amount of simulations and reconstruction are running on the Grid ...

Backup Slides

X section of Signal and main BG

Sqrt(s)	230GeV	250GeV	350GeV
ZH(fb)	6.62 (3310 evt)	7.78 (3890)	4.87 (2435)
ee→ZZ (fb)	1.34k (672k)	1.27k (635k)	0.856k (428k)
ee→WW (fb)	15.86k (7.93M)	15.61k (7.81M)	1.155k (5.77M)
ee→qq (fb)	57.6k (28.8M)	52.2k (26.1M)	22.63k (11.3M)
ee→μμγ (fb)	5.38k (2.69M)	4.34k (2.17M)	2.20k (1.1M)

Non-Polarized beam at 500 fb⁻¹; ISR, FSR, BS activated

• Huge SM Background: Pre Cuts is needed! In Generator Level:

	ZH	ZZ	ww	QQ	μμγ
Before Precuts	3310	672k	7.93M	28.8M	2.69M
E1>15	3310	347k	5.22M	15.8M	2.69M
mZ>70	3147	43.7k	310k	169k	920k
Δφ < 3.10 (177.6°)	3042	42.1k	299k	62.6k	242k
2E1+E2<180 && 2E1+3E2>200	3000	17.7k	81.9k	33.8k	23.1k
	90.6%	2.6%	1.0%	0.12%	0.86%

Model independent analysis

- After Simulation and Reconstruction:
 - Restrict the cuts to: $E_{mu}^{>20}$ $2E_1 + E_2 < 178 \& 2E_1 + 3E_2 > 202$ $\Delta \varphi < 176.4^{\circ}$ $76.2 < m_z < 100$

Cut Chain for model independent analysis

Minimal Version	ZH	ZZ	WW	μμγ
Total event num at 500 fb-1	3310	672k	7.93M	2.69M
Expected event num after preCuts	3k	17.7k	81.9k	23.1k
Both muon identified	2824	15.3k	13.9k	20.3k
restrict precuts +Geometry	2439	12.1k	8.6k	14.5k
E ₂ > 20 && E ₂ <53 && 2E1+E2<178 && 2E1+3E2>202 && 2E1+3E2<264	2437	7.3k	7.5k	11.9k
-0.995 < Cos(θμμ) < -0.3	2426	7.0k	7.1k	11.1k
Δφ _{μμ} < 176.4° && Εγ<30	2210	5.4k	4.8k	1401
115GeV < Hmass < 140GeV	2192	3531	3745	1138

* qqbar disappeared after muon ID

Model independent measurement: $\delta(mH) = 38MeV$

Model dependent analysis Higgs SM decay and Invisible Decay

- SM Higgs decay events:
 - N_track > 2
 - Total energy > 150GeV
- Higgs invisible decay:
 - N_track < 4</p>
 - Total energy<110GeV
- Two obvious benefits
 - Larger S/N ratio and thus better measurement
 - Freedom to tune cuts for different decay models

Cuts Chain for SM Higgs analysis

	ZH	ZZ	WW	μμγ
Total event num at 500 fb ⁻¹	3310	672k	7.93M	2.69M
Expected event num after preCuts	3k	17.7k	81.9k	23.1k
Both muon identified	2824	15.3k	13.9k	20.3k
recover precuts +Geometry	2439	12.1k	8.6k	14.5k
Same Kinetic Cut as model independent analysis	2426	7.0k	7.1k	11.1k
TrkNum>2 && TotalEn>150	2338	5.4k	526	146
115GeV < Hmass < 140GeV	2319	3.5k	128	389
Eγ<30GeV	2280	3.4k	124	269
	68.9%			

SM measurement: $\delta(mH) = 29MeV$

Cuts Chain for Invisible Higgs analysis

	ZH	ZZ	WW	μμγ
Total event num at 500 fb ⁻¹	3310	672k	7.93M	2.69M
Expected event num after preCuts	3k	17.7k	81.9k	23.1k
recover precuts +Geometry	2439	12.1k	8.6k	14.5k
Same Kinetic Cut as model independent analysis	2426	7.0k	7.1k	11.1k
TrkNum<4 && 90 <totalen<110< td=""><td>2326</td><td>1.1k</td><td>5.2k</td><td>2090</td></totalen<110<>	2326	1.1k	5.2k	2090
Εγ<30	2285	863	4.1k	1164
115GeV < Hmass < 140GeV	2267	554	3316	1016

Invisible Higgs measurement: $\delta(mH) = 29MeV$

ZH->µµX Analysis - M. Ruan

- - Software Chain
- - Model Independent Analysis
- - Model Dependent Analysis
- - SM Higgs Decay
- - Invisible Decay

ZH->eeX Analysis - H. Li

- General Remarks on Electrons
- Software Chain
- Beam Simulation: GUINEA-PIG
- Cross Section Evaluation
- Variables For Event Selection
- Event Weight

Software Chain

- Beam Simulation: GUINEA-PIG
- Event Generation (Signal and Backgrouds): PYTHIA
- Simulation: Mokka (LDC01Sc and LDCPrime)
- Reconstruction:
 - Tracking: FullLDCTracking (A. Raspiareza)
 - Clustering and PFA: PandoraPFA (M. Thomson)
 - Electron ID: CutBasedEID (H. Li)
- Analysis: ROOT, RooFit, etc.

Electron Channel

Beam Simulation: GUINEA-PIG

Luminosity Spectrum Resulting from Beamstrahlung

Beam Parameters *

Ecm (GeV)	230	250	350
energy (GeV)	115	125	175
sigma _x (mm)	639	639	639
sigma _y (mm)	5.7	5.7	5.7
sigma _z (µ m)	138	150	210
Beta _x (mm)	9.2	10	14
Emitt _y (10 ⁻⁶ m•rad)	0.04	0.04	0.04

*From M. Ruan, to keep persistence with his muon channel study.

June 11, 2008

Electron Channel

GUINEA-PIG to PYTHIA Interface

- GUINEA-PIG lumi spectrum output is not randomly distributed
- Methods:
 - 1) Randomize lumi_file entries before passing it to the generators
 - BeamRand: (Hengne Li) to randomize the lumi_file
 - Beams: (Yuanning Gao), to read lumi_file in generators
 - 2) Randomly pick up the entries from the complete lumi_file
 - CALYPSO*: (Daniel Schulte), randomly read and pass lumi_file entries to generators, from the author of GUINEA-PIG

* Machine-Detector Interface at CLIC / Daniel Schulte, (CERN) : CERN-PS-2001-002-AE; CLIC-Note-469