Higgs Recoil Mass and Cross Section Measurements

Manqi Ruan ${ }^{1,2}$, Hengne Li^{1}
Francois Richard ${ }^{1}$, Zhiqing Zhang ${ }^{1}$, Yuanning Gao 2, Roman Poeschl ${ }^{1}$
${ }^{1}$ LAL ORSAY
${ }^{2}$ Tsinghua University
\section*{OUTLINE}
- Motivation
- Software Chain
- General Remarks
- ZH-> $\mu \mu \mathrm{X}$ Results - M. Ruan
- ZH->eeX Current Status - H. Li
- Summary

Motivation

- Higgs-Strahlung Process:

- Higgs Recoil Mass:
$m_{h^{0}}^{2}=s+m_{Z^{0}}^{2}-2 E_{Z^{0}} \sqrt{s}$
- Cross Section and Coupling Strength Measurement:

$$
g^{2} \propto \sigma=N / L \epsilon
$$

- Using only information of final state leptons

Although the Cross Section is not at the peak for $\mathrm{Ecm}=230$ GeV , but if we consider the resolution of the recoil mass and the cross section, we will find 230 GeV is optimal

Precise Measurement

General Remarks

Different Nature of muon channel and electron channel

Muon Channel Golden Channel

Advantages:

- less detector material dependence
- Perfect Tracking Resolutions
- no need to worry too much about the bremsstrahlung

Efforts Before Analysis:

- not much

Efforts of Analysis:

- Pre-cuts are safe
- Signal Selection: increase S/N ratio

Electron Channel

Disadvantages:

- sensitive detector material dependence
- Bad Tracking resolutions
- can NEVER as good as muons!
- Painful nature of bremsstrahlung

Efforts Before Analysis:

- Tracking of electrons: a big story

Efforts of Analysis:

- Pre-cuts affect the results: not safe
- Only full simulation can comparable with data: more efforts
- Signal Selection: increase S / N ratio

Software Chain

- Event Generation:
- Beam Simulation: GUINEA-PIG
- Signal:
- ZH-> $\mu \mu \mathrm{X}$: WHIZARD
- ZH->eeX: PYTHIA
- Backgrounds: PYTHIA
- Simulation:
- Full simulation: GEANT4 (Mokka)
- Detector model:
- Muon Channel: LDC01Sc
- Electron Channel: LDC01Sc/ LDCPrime_02Sc
- Reconstruction:
- Muon Channel:
- FullLDCTracking (A. Raspereza)
- Wolf (A. Raspereza)
- Electron Channel:
- FullLDCTracking (A. Raspereza)
- PandoraPFA (M. Thomson)
- Analysis:
- ROOT, RooFit

Muon Channel

Signal and Backgrounds Considered

Process	Cross Section* (fb)	Preselected** (\%)
hZ	6.62	90.6
ZZ	1340	2.6
WW	15860	1.0
qq	57600	0.12
$\gamma / \mathrm{Z}->\mu \mu(\gamma)$	5380	0.86

- *The cross section numbers are given for unpolarized beams
- **To generate efficiently $500 \mathrm{fb}^{-1} \mathrm{MC}$ samples, apply preselection cuts:
- $\mathrm{E}_{1,2}>15 \mathrm{GeV}$ (particles 1 and 2 have opposite charge)
- $\mathrm{M}_{12}>70 \mathrm{GeV}$
- $\phi_{12}<177.6^{\circ}$
- $2 \mathrm{E}_{1}+\mathrm{E}_{2}<180 \mathrm{GeV} \& 2 \mathrm{E}_{1}+3 \mathrm{E}_{2}>200 \mathrm{GeV}$

Muon Channel

Model Independent Analysis/Results

Process	$\mathrm{N}_{\text {preselected }}$	$\mathrm{N}_{\text {selected }}{ }^{*}$
hZ	3.0 k	2.1 k
ZZ	17.7 k	7.8 k
WW	81.9 k	4.3 k
qq	34.6 k	--
$\mu \mu(\gamma)$	23.1 k	5.2 k

* Final selection cuts:
- Muon ID
- $83<\mathrm{M}_{12}<98 \mathrm{GeV}$
- $\phi_{12}<175^{\circ}$
$-\quad-0.99<\cos \theta_{12}<-0.3$
- $\mathrm{P}_{\mathrm{T}}>15 \mathrm{GeV}$

Muon Channel

Further (Model Dependent) Analysis

Using Higgs decay final state to improve the background rejection Two possibilities studied:

1) SM-like Higgs boson

- $\mathrm{N}_{\text {track }}>2$

$$
\begin{aligned}
& \mathrm{mH}=119.986 \pm 0.029 \mathrm{GeV} \\
& \sigma=6.65 \mathrm{fb} \pm 0.24 \mathrm{fb}
\end{aligned}
$$

2) Dominant invisible decay mode - $\mathrm{N}_{\text {track }}<4$

$$
\mathrm{mH}=119.996 \pm 0.029 \mathrm{GeV}
$$

$$
\sigma=6.80 \mathrm{fb} \pm 0.25 \mathrm{fb}
$$

Electron Channel

Remarks on Electrons

- The painful nature of electrons: Bremsstrahlung!!

- Pre-cuts applied on muon channel are not safe for electrons!
- e.g. recoil mass of ee->ee (red), will shift into the signal window (black).
- Solution:
- Step 1: Event Weights
- Step 2: Evaluated which pre-cuts are safe

Electron Channel

Cross Section Evaluation

	Process	$\sigma[\mathrm{fb}]\left(N_{E V T}\right)$		
		PYTHIA	WHIZARD	BHWIDE
Signal	$e^{+} e^{-} \rightarrow Z^{0} h^{0} \rightarrow e^{+} e^{-} X$	$6.31(3155)$	$6.34(3170)$	
Background	$e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma_{s}^{1)}$	$2531[p b]$		$2408[p b]$
		$\left(1.266 \times 10^{9}\right)$		$\left(1.204 \times 10^{9}\right)$
	$e^{+} e^{-} \rightarrow \tau^{+} \tau^{-} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$	4753.5		
		$\left(2.376 \times 10^{6}\right)$		
	$e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow e^{+} \nu_{e} e^{-} \bar{\nu}_{e}$	$189.7(94850)$		
	$\left.e^{+} e^{-} \rightarrow Z^{0} Z^{0} \rightarrow e^{+} e^{-} f \bar{f}^{2}\right)$	$120.72(60360)$		
	$e^{+} e^{-} \rightarrow Z^{0} Z^{0} \rightarrow e^{+} e^{-} e^{+} e^{-3)}$	$2.836(1418)$		

- Results considered beamstrahlung, ISR and FSR, for $\mathrm{E}_{\mathrm{cm}}=230 \mathrm{GeV}$
- Backgrounds, angular acceptance of $|\cos \theta|<0.996$ is considered in the cross section evaluation: ONLY!
- Signal, the fraction of final state two electrons within angular acceptance is 0.989
- Expected $\mathrm{N}_{\mathrm{EvT}}$ is for an integrated luminosity of $500 \mathrm{fb}^{-1}$

[^0]
Electron Channel

Event Weight: Safely Reduce the Simulation Amount

- Since the pre-cuts in generator level is not safe, Event Weight can be one way to reduce the simulation amount safely.
- e.g. Divide the ee->ee background into four parts:
I: $\mathrm{m}_{\text {recoil }}>90 \mathrm{GeV}$ and $\min |\cos \theta|<0.8$
II: $\mathrm{m}_{\text {recoil }}>90 \mathrm{GeV}$ and $\min |\cos \theta|>0.8$
III: $\mathrm{m}_{\text {recoil }}<90 \mathrm{GeV}$ and $\min |\cos \theta|<0.8$
IV: $\mathrm{m}_{\text {recoiil }}<90 \mathrm{GeV}$ and $\min |\cos \theta|>0.8$
- Simulate 100 k events for each division

- Apply Event Weights: (in the form)
- Then, statistics are enough

Backgrounds	Divisions				
	I	II	III	IV	
$e^{+} e^{-}\left(\gamma_{s}\right)$	fraction	9.22×10^{-5}	1.9505×10^{-3}	1.60028×10^{-2}	0.9821253
	weight	1.167	24.693	202.595	12433.706

Electron Channel

Variables For Signal Selection

Signal Selection Variables:

- Kinematic
- Angular

Kinematic Variables:

10k events for each type of reactions
All the plots are in log view.

Electron Channel

Variables For Signal Selection

All these Kinematic and Angular Variables can be used later on for signal selection : 1) Cuts; 2) Likelihood

Angular Variables:

Summary

- Ecm $=230 \mathrm{GeV}$ is a good choice
- ZH-> $\mu \mu \mathrm{X}$ Analysis - M. Ruan
- Wise and Sophisticated Cut Study gains good resolution of Recoil Mass and Cross Section measurements
- Model Independent: $\delta\left(\mathrm{m}_{\mathrm{h}}\right) \sim 38 \mathrm{MeV}, \delta(\sigma) \sim 0.35 \mathrm{fb}$
- SM Decay: $\delta\left(\mathrm{m}_{\mathrm{h}}\right) \sim 29 \mathrm{MeV}, \delta(\sigma) \sim 0.24 \mathrm{fb}$
- Invisible Decay: $\delta\left(m_{h}\right) \sim 29 \mathrm{MeV}, \delta(\sigma) \sim 0.25 \mathrm{fb}$
- ZH->eeX Analysis - H. Li
- Pre-cuts are not safe for electrons: Bremsstrahlung
- Event weight method applied
- Various variables for signal selection are studied in generator level
- Large amount of simulations and reconstruction are running on the Grid ...

Backup Slides

X section of Signal and main BG

Sqrt(s)	230 GeV	250 GeV	350 GeV
ZH(fb)	$6.62(3310 \mathrm{evt})$	$7.78(3890)$	$4.87(2435)$
ee $\rightarrow \mathrm{ZZ}(\mathrm{fb})$	$1.34 \mathrm{k}(672 \mathrm{k})$	$1.27 \mathrm{k}(635 \mathrm{k})$	$0.856 \mathrm{k}(428 \mathrm{k})$
ee $\rightarrow \mathrm{WWW}(\mathrm{fb})$	$15.86 \mathrm{k}(7.93 \mathrm{M})$	$15.61 \mathrm{k}(7.81 \mathrm{M})$	$1.155 \mathrm{k}(5.77 \mathrm{M})$
ee $\rightarrow \mathrm{qq}(\mathrm{fb})$	$57.6 \mathrm{k}(28.8 \mathrm{M})$	$52.2 \mathrm{k}(26.1 \mathrm{M})$	$22.63 \mathrm{k}(11.3 \mathrm{M})$
ee $\rightarrow \mu \mu \mathrm{y}(\mathrm{fb})$	$5.38 \mathrm{k}(2.69 \mathrm{M})$	$4.34 \mathrm{k}(2.17 \mathrm{M})$	$2.20 \mathrm{k}(1.1 \mathrm{M})$

Non-Polarized beam at $500 \mathrm{fb}^{-1}$; ISR, FSR, BS activated

- Huge SM Background: Pre Cuts is needed! In Generator Level:

	ZH	ZZ	WW	QQ	$\mu \mu \mathrm{Y}$
Before Precuts	3310	672k	7.93M	28.8M	2.69M
E1>15	3310	347k	5.22M	15.8M	2.69M
$m Z>70$	3147	43.7k	310k	169k	920k
$\Delta \varphi<3.10$ (177.6 ${ }^{\circ}$)	3042	42.1k	299k	62.6k	242k
$2 E 1+E 2<180$ \& \& 2E1+3E2>200	$\begin{gathered} 3000 \\ 90.6 \% \end{gathered}$	$\begin{aligned} & 17.7 \mathrm{k} \\ & 2.6 \% \end{aligned}$	$\begin{aligned} & 81.9 \mathrm{k} \\ & 1.0 \% \end{aligned}$	$\begin{aligned} & 33.8 \mathrm{k} \\ & \mathbf{0 . 1 2 \%} \end{aligned}$	$\begin{aligned} & 23.1 \mathrm{k} \\ & 0.86 \% \end{aligned}$

Model independent analysis

- After Simulation and Reconstruction:
- Restrict the cuts to:
$E_{m u}>20$
$2 E_{1}+E_{2}<178 \& \& 2 E_{1}+3 E_{2}>202$
$\Delta \varphi<176.4^{\circ}$
$76.2<m_{z}<100$
Cut Chain for model independent analysis

Minimal Version	ZH	ZZ	WW	$\mu \mu \mathrm{Y}$
Total event num at 500 fb $^{-1}$	3310	672 k	7.93 M	2.69 M
Expected event num after preCuts	3 k	17.7 k	81.9 k	23.1 k
Both muon identified	2824	15.3 k	13.9 k	20.3 k
restrict precuts +Geometry	2439	12.1 k	8.6 k	14.5 k
$E_{2}>20$ \&\& $E_{2}<53$ \&\& $2 E 1+E 2<178 \& \&$ $2 E 1+3 E 2>202 ~ \& \& 2 E 1+3 E 2<264$	2437	7.3 k	7.5 k	11.9 k
$-0.995<\operatorname{Cos}(\theta \mu \mu)<-0.3$	2426	7.0 k	7.1 k	11.1 k
$\Delta \varphi_{\mu \mu}<176.4 \circ \& \& \mathrm{EY}<30$	2210	5.4 k	4.8 k	1401
$115 \mathrm{GeV}<\mathrm{Hmass}<140 \mathrm{GeV}$	2192	3531	3745	1138

* qqbar disappeared after muon ID

Model independent measurement: $\delta(\mathrm{mH})=38 \mathrm{MeV}$

Model dependent analysis Higgs SM decay and Invisible Decay

- SM Higgs decay events:
- N_track > 2
- Total energy > 150 GeV
- Higgs invisible decay:
- N_track < 4
- Total energy<110GeV
- Two obvious benefits
- Larger S/N ratio and thus better measurement
- Freedom to tune cuts for different decay models

Higgs Decay Br with a forth neutrino with mass $=50 \mathrm{GeV}$
ECFA2008

Cuts Chain for SM Higgs analysis

	ZH	ZZ	WW	$\mu \mu \mathrm{y}$
Total event num at 500 fb^{-1}	3310	672 k	7.93 M	2.69 M
Expected event num after preCuts	3 k	17.7 k	81.9 k	23.1 k
Both muon identified	2824	15.3 k	13.9 k	20.3 k
recover precuts +Geometry	2439	12.1 k	8.6 k	14.5 k
Same Kinetic Cut as model independent analysis	2426	7.0 k	7.1 k	11.1 k
TrkNum>2 \&\& TotalEn>150	2338	5.4 k	526	146
$115 \mathrm{GeV}<$ Hmass < 140GeV	2319	3.5 k	128	389
Ey<30GeV	2280	3.4 k	124	269
68.9%				

SM measurement: $\delta(\mathrm{mH})=29 \mathrm{MeV}$

Cuts Chain for Invisible Higgs analysis

	ZH	ZZ	WW	$\mu \mu \mathrm{Y}$
Total event num at 500 fb-1	3310	672 k	7.93 M	2.69 M
Expected event num after preCuts	3 k	17.7 k	81.9 k	23.1 k
recover precuts +Geometry	2439	12.1 k	8.6 k	14.5 k
Same Kinetic Cut as model independent analysis	2426	7.0 k	7.1 k	11.1 k
TrkNum<4 \&\& 90<TotalEn<110	2326	1.1 k	5.2 k	2090
EY<30	2285	863	4.1 k	1164
$115 \mathrm{GeV}<$ Hmass <140GeV	2267	554	3316	1016

Invisible Higgs measurement: $\delta(\mathrm{mH})=29 \mathrm{MeV}$

ZH-> $\mu \mu \mathrm{X}$ Analysis - M. Ruan

- - Software Chain
- - Model Independent Analysis
- - Model Dependent Analysis
- - SM Higgs Decay
- - Invisible Decay

ZH->eeX Analysis - H. Li

- General Remarks on Electrons
- Software Chain
- Beam Simulation: GUINEA-PIG
- Cross Section Evaluation
- Variables For Event Selection
- Event Weight

Software Chain

- Beam Simulation: GUINEA-PIG
- Event Generation (Signal and Backgrouds): PYTHIA
- Simulation: Mokka (LDC01Sc and LDCPrime)
- Reconstruction:
- Tracking: FullLDCTracking (A. Raspiareza)
- Clustering and PFA: PandoraPFA (M. Thomson)
- Electron ID: CutBasedEID (H. Li)
- Analysis: ROOT, RooFit, etc.

Electron Channel

Beam Simulation: GUINEA-PIG

Luminosity Spectrum Resulting from Beamstrahlung

Beam Parameters *

Ecm (GeV)	$\mathbf{2 3 0}$	$\mathbf{2 5 0}$	$\mathbf{3 5 0}$
energy (GeV)	115	125	175
sigma $_{\mathrm{x}}(\mathrm{mm})$	639	639	639
sigma $_{\mathrm{y}}(\mathrm{mm})$	5.7	5.7	5.7
$\operatorname{sigma}_{\mathrm{z}}(\mu \mathrm{m})$	138	150	210
$\operatorname{Beta}_{\mathrm{x}}(\mathrm{mm})$	9.2	10	14
Emitt $_{\mathrm{y}}\left(10^{-6} \mathrm{~m} \bullet \mathrm{rad}\right)$	0.04	0.04	0.04

*From M. Ruan, to keep persistence with his muon channel study.

Electron Channel

GUINEA-PIG to PYTHIA Interface

- GUINEA-PIG lumi spectrum output is not randomly distributed
- Methods:
- 1) Randomize lumi_file entries before passing it to the generators
- BeamRand: (Hengne Li) to randomize the lumi_file
- Beams: (Yuanning Gao), to read lumi_file in generators

2) Randomly pick up the entries from the complete lumi_file

- CALYPSO*: (Daniel Schulte), randomly read and pass lumi_file entries to generators, from the author of GUINEA-PIG

* Machine-Detector Interface at CLIC / Daniel Schulte, (CERN) : CERN-PS-2001-002-AE; CLIC-Note-469

[^0]: ${ }^{1)}$ Including both γ^{*} and Z^{0} neutral currents, where, PYtHIA considers only t-channel exchange, while BHWIDE considers both t -channel and s-channel exchanges.
 2) $f \bar{f}$ here excludes $Z^{0} \rightarrow e^{+} e^{-}$.
 ${ }^{3)}$ At least one pair of the final state $e^{+} e^{-}$within the angular acceptance range.

