Outline	Introduction and Motivation 00	Signal and background	Summary and Outlook	Appendix 0000

Hunting the invisible sneutrinos at the ILC Status report

Tania Robens

in collaboration with J. Kalinowski, W. Kilian, J. Reuter, K. Rolbiecki

RWTH Aachen

ECFA Workshop 2008, Warsaw, 10.6.2008

Tania Robens

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 0000

Introduction and Motivation

Sneutrino mass determination

2 Signal and background

- Signal and background w/o cuts
- Results including cuts
- $\widetilde{\chi}^{\pm}$ and $\widetilde{\nu}$ mass determination

Summary and Outlook

Outline	Introduction and Motivation ●○	Signal and background	Summary and Outlook	Appendix 0000		
Sneutrino ma	Sneutrino mass determination					
Sneut	rinos in the MSSN	Л				

- standard way of sneutrino mass determination: threshold scans, measure cross sections decay products
- typical:

$$\tilde{\nu} \to \tilde{\chi}^{\pm} I^{\mp}$$
 (1)

- in some points of parameters space: $m_{\widetilde{\chi}} > m_{\widetilde{\nu}}$, dominant decay $\widetilde{\nu} \to \widetilde{\chi}^0 \, \nu$
- decay products invisible
- but: can nevertheless "see" the $\tilde{\nu}$ in $\tilde{\chi}^{\pm}$ decays (inverse of (1))
- already explored by Freitas ea, 05

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix	
	0•	000000000000		0000	
Sneutrino mas	Sneutrino mass determination using sophisticated tools				
What's	s new ??				

- idea: redo the analysis using full matrix element for both signal and backgrounds
- \Rightarrow include all interference effects
- \Rightarrow get a handle on complicated final states (up to 10 particles in the final state)
 - for this: using Monte Carlo Event Generator WHIZARD
 - authors: W. Kilian, T. Ohl, J. Reuter (LC-TOOL-2001-039, arXiv: 0708.4233 [hep-ph])
 - so far: LO Monte Carlo Event Generator for $2 \rightarrow n$ particle processes
 - $\mathcal M$ generation: O'Mega, full matrix element generation
 - initial state radiation and beamstrahlung automatically included

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 0000			
Signal and b	Signal and background w/o cuts						
Signal	l and (MS)SM ba	ckgrounds					

• chargino decay through sneutrinos: leptonic decay mode

$$e^+ e^- \longrightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \longrightarrow (\tilde{\bar{\nu}}_e \, \tilde{\nu}_\mu \, e^- \, \mu^+ \longrightarrow) \, \widetilde{\chi}_1^0 \, \widetilde{\chi}_1^0 \, e^- \, \mu^+ \, \nu_\mu \, \bar{\nu}_e$$

signal: $e^- \, \mu^+ \, + \, \mathbf{E}_{\text{miss}}$

- many background processess !! 23 considered in our study
- SM backgrounds: mainly (W (pair)production, τ pair production)

$$e^+e^- \longrightarrow$$
 anything $\longrightarrow e^-\mu^+ n_i \nu_i n_j \bar{\nu}_j (\gamma \gamma ...)$

• SUSY backgrounds: SUSY version of above processes \Rightarrow additional $\widetilde{\chi}_1^0 {\rm s}$

$$e^+e^- \longrightarrow \text{anything} \longrightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 n_i \nu_i n_j \overline{\nu}_j (\gamma \gamma ...)$$

• +: backgrounds with additional visible particles vanishing in the beampipe

Tania Robens

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background ○●○○○○○○○○○○	Summary and Outlook	Appendix 0000	
Signal and background w/o cuts					
Point SPS1a'					

- mSUGRA scenario
- according to Snowmass Points (Allanach ea, 02), in agreement with cosmology data/ WMAP ($\tilde{\chi}_1^0$ as DM candidate)

Hunting sneutrinos

Signal and background w/o cuts

Large SM backgrounds ($\sqrt{s} = 500 \, \text{GeV}$)

(including initial state radiation and beamstrahlung)

 $\sigma_{\rm signal}\,=\,3.97\,\pm\,0.01\,{\rm fb}$

- $\sigma_{\gamma\tau} = 25.495 \pm 0.004 \, \text{pb} \left(e^+ e^- e^+ \mu^- \nu_\mu \, \bar{\nu}_e \nu_\tau \, \bar{\nu}_\tau \right)$ photon induced τ pairproduction
- $\sigma_{\gamma c} = 1.089 \pm 0.004 \, \text{pb} \left(e^+ e^- e^+ \mu^- \nu_\mu \, \bar{\nu}_e j \, j \right)$

photon induced charm pairproduction (jets vanish in beampipe)

- $\sigma_{WW} = 152.42 \pm 0.41 \,\text{fb} \left(e^{-}\mu^{+}\nu_{\mu}\,\bar{\nu}_{e}\right)$ WW (pair) production
- $\sigma_{\tau} = 32.7 \pm 0.1 \, \text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \, \bar{\nu}_{e} \nu_{\tau} \, \bar{\nu}_{\tau} \right)$ $\tau \, \text{pairproduction}$

•
$$\sigma_{\tau e} = 26.64 \pm 0.10 \,\text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \,\bar{\nu}_{e} \nu_{\tau} \,\bar{\nu}_{\tau} \right)$$

 $\tau^{+} e^{-}$ production and decay

•
$$\sigma_{\tau \,\mu} = 15.57 \pm 0.05 \,\text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \, \bar{\nu}_{e} \nu_{\tau} \, \bar{\nu}_{\tau} \right)$$

 $\tau^{-} \mu^{+}$ production and decay

Tania Robens

Hunting sneutrinos

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Signal and background

Signal and background w/o cuts

Signal-size (MS)SM backgrounds ($\sqrt{s} = 500 \, \text{GeV}$)

(including initial state radiation and beamstrahlung)

$\sigma_{\rm signal}\,=\,3.97\,\pm\,0.01\,{\rm fb}$

- $\sigma_{\tau W} = 2.978 \pm 0.009 \,\text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \,\bar{\nu}_{e} \nu_{\tau} \,\bar{\nu}_{\tau} \nu_{\tau} \,\bar{\nu}_{\tau}
 ight)$ $\tau \text{ from WW production}$
- $\sigma_{\gamma W} = 2.192 \pm 0.012 \,\text{fb} \left(e^- e^+ e^- \mu^+ \nu_\mu \,\bar{\nu}_e \nu_\tau \,\bar{\nu}_\tau\right)$ photon induced WW production
- $\sigma_{\tilde{\tau}} = 4.107 \pm 0.007 \, \text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \bar{\nu}_{e} \nu_{\tau} \bar{\nu}_{\tau} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \right)$ stau pairproduction
- $\sigma_{\tilde{\tau} e} = 3.69 \pm 0.03 \,\text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \bar{\nu}_{e} \nu_{\tau} \bar{\nu}_{\tau} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \right)$ $\tilde{\tau} e^{-}$ production and decay
- $\sigma_{\tilde{\tau}\nu_{\tau}} = 2.74 \pm 0.09 \, \text{fb} \left(e^{-} \mu^{+} \nu_{\mu} \, \bar{\nu}_{e} \nu_{\tau} \, \bar{\nu}_{\tau} \nu_{\tau} \, \bar{\nu}_{\tau} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \right)$ stau-neutrino production (mainly from $\tilde{\chi}$ production)
- $\sigma_{\tilde{\tau}\,\mu} = 2.62 \pm 0.02 \,\text{fb} \left(e^{-\mu^{+}} \nu_{\mu} \bar{\nu}_{e} \nu_{\tau} \bar{\nu}_{\tau} \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \right)$ $\tilde{\tau}\,\mu^{+}$ production and decay

Tania Robens

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 0000		
Signal and ba	Signal and background w/o cuts					
Backg	rounds: summarv					

- a lot of numbers... summary:
- before cuts:

$$rac{{
m signal}}{{
m background}}\,=\,{\cal O}(10^{-4})$$

• 5 % of background SUSY-induced:

$$\frac{\text{total SUSY}}{\text{background}} = \mathcal{O}(10^{-4})$$

- largest background: photon-induced $\tau \tau, c \bar{c}$ production
- of course, this is no surprise...

Tania Robens

Hunting sneutrinos

Signal and background w/o cuts

Handling backgrounds: cuts

- many different backgrounds with different kinematics (between 4 and 10 final state particles)
- $\Rightarrow\,$ need cuts which significantly suppress backgrounds, don't kill too much of the signal
 - example: very large background: photon induced $\tau\tau$ production

$$\sigma_{\gamma\tau} = 25.495 \pm 0.004 \, \mathrm{pb}, \, \sigma_{\mathsf{signal}} = 3.97 \pm 0.008 \, \mathrm{fb}$$

factor 10⁴ difference

- background: results in low energy τ s with litte p_{\perp} , leptons emitted back to back
- \Rightarrow suppression $\mathcal{O}(10^6)$ from

$$p_{\perp}(e,\mu) \geq 2 \,\mathrm{GeV}, -172^o \leq \Delta \phi \leq 172^o$$

Tania Robens

Hunting sneutrinos

Outline Introduction and Motivation

Signal and background

Summary and Outlook

Appendix 0000

Signal and background w/o cuts

Example: cuts on photon induced $\tau\tau$ backgrounds

p_{\perp} and $\Delta \phi$ distributions of signal, au au background normalized to same σ_{tot}

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 0000	
Results includ	ing cuts				
Cross sections including cuts					

In the end: Mastercuts for all backgrounds

$$\begin{split} & 2\text{GeV} \leq p_{\perp}(e,\mu) \leq 1\,\text{TeV}, \, 4\text{GeV} \leq p_{\perp}(e) + p_{\perp}(\mu) \leq 1\,\text{TeV} \\ & 1\text{GeV} \leq E(e,\mu) \leq 40\text{GeV}, \, -150^{\circ} \leq \Delta\,\phi \leq 150^{\circ}, \\ & 15^{\circ} \leq \theta(e) \leq 155^{\circ}, \, 25^{\circ} \leq \theta(\mu) \leq 165^{\circ} \end{split}$$

$$\begin{array}{rcl} \sigma_{\text{signal}} &\longrightarrow & 1.639 \pm 0.003 \, \text{fb} \, (41\%) \\ \sigma_{\gamma\tau} &\longrightarrow & 0.234 \pm 10^{-5} \, \text{fb} \, (\mathcal{O}(10^{-5})) \\ \sigma_{WW} &\longrightarrow & 0.794 \pm 0.002 \, \text{fb} \, (0.5\%) \\ \sigma_{\tilde{\tau}} &\longrightarrow & 0.978 \pm 0.002 \, \text{fb} \, (24\%) \\ \sigma_{\tilde{\tau}e} &\longrightarrow & 1.102 \pm 0.008 \, \text{fb} \, (30\%) \\ \sigma_{\tilde{\tau}\nu\tau} &\longrightarrow & 0.72 \pm 0.02 \, \text{fb} \, (24\%) \\ \sigma_{\tilde{\tau}\mu} &\longrightarrow & 0.966 \pm 0.008 \, \text{fb} \, (37\%) \end{array}$$

SM almost dissappeared; still large SUSY backgrounds

Tania Robens

Hunting sneutrinos

ECFA Workshop 2008, , Warsaw, 10.6. 2008

ъ

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appen 0000
Results includ	ing cuts			
Energy	/ distributions inc	luding cuts		

for SPS1a',
$$\sqrt{s}\,=\,500\,{
m GeV}$$
, $\int {\cal L}\,=\,1{
m ab}^{-1}$,

signal, SUSY background $\tilde{\tau} I$ (54%), $\tilde{\tau}\tilde{\tau}$ (25%), $\tilde{\tau}\tilde{\tau}\nu_{\tau}\bar{\nu}_{\tau}$ (17%) SM background WW (49%), WW via τI (33%), ... signal/ background = 0.30

Tania Robens

Hunting sneutrinos

signal, semisignal: very similar kinematics, hard to find cuts

• SPS1a': $\widetilde{\chi}_1^{\pm}$ and $\widetilde{\nu}_e$ nearly mass degenerate

$$m_{\tilde{\chi}^{\pm}} = 183.67 \,\mathrm{GeV}, \; m_{\tilde{\nu}} = 173.52 \,\mathrm{GeV}$$

- $\tilde{\nu}$ decays to $\tilde{\chi}^0, \nu$: can only be observed indirectly
- determination from lepton energy (Freitas ea, 05):

$$m_{\widetilde{\chi}^{\pm}} = \sqrt{s} \, rac{\sqrt{E_{\min} E_{\max}}}{E_{\min} + E_{\max}}, \ m_{\widetilde{\nu}} = m_{\widetilde{\chi}^{\pm}} \sqrt{1 - rac{2(E_{\min} + E_{\max})}{\sqrt{s}}},$$

 $E_{\min, \max}$: edges of lepton energy distributions; $\widetilde{\chi}_1^{\pm}, \ \widetilde{\nu}_e$ are assumed onshell

E_{\min} hard in this case \Rightarrow remember distributions...

Tania Robens

Hunting sneutrinos

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• next idea: take $m_{\widetilde{\chi}}$ from threshold scans (much better anyway)

use

E Coll of a

$$m_{\widetilde{
u}}^2 \ = \ m_{\widetilde{\chi}}^2 \ \left(1 - rac{4 \, E_{\mathsf{max}}}{\sqrt{s}} \, rac{1}{1 + \sqrt{1 - rac{4 \, m_{\widetilde{\chi}}^2}{s}}}
ight)$$

• readoff: $E_{\max} = 24 \pm 1 (2) \, \text{GeV}$, use $m_{\widetilde{\chi}} = 184 \pm 1 \, \text{GeV}$ • obtain

$$m_{\tilde{\nu}} = 174 \pm 3(5) \,\mathrm{GeV}\,\checkmark$$
 (input: 172.52 GeV)

Tania Robens

Hunting sneutrinos

- determination works, but still 1% error possible improvements
- find better cuts \implies also determine E_{\min}
- use a fitting procedure for $m_{\tilde{\nu}}$ using E_{\max} , σ (\Rightarrow Freitas ea) (work in progress)
- use more sophisticated fitting procedures $(\chi^2 \text{ bin by bin}/\text{ use full kinematic information as eg lepton energy correlations}/\dots)$

...

Outline	Introduction and Motivation 00	Signal and background	Summary and Outlook	Appendix 0000
Summ	ary and Outlook			

- Invisible sneutrinos become visible in leptonic decays of charginos at the ILC, mass determination is possible
- using full matrix elements for 2 → n processes involved, including all (SUSY and SM) backgrounds
- all processes are generated with initial state radiation and beamstrahlung
- so far: backgrounds sufficiently suppressed
- determination of both upper and lower edge not that easy
- possible improvement: better cuts, fitting routines
- compare to previous analysis by Freitas ea (work in progress)
- in the long run: different scenarios
- in the long long long run: extend to NLO (feasible ??)
- read about this in arXiv:0803.4161

Thanks for listening

Tania Robens

Hunting sneutrinos

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix ●000	
More results					
SM backgrounds contributing after cuts					

$$\sigma_{\mathrm{sign, nc}} = 3.97 \,\mathrm{fb}, \qquad \sigma_{\mathrm{sign, cut}} = 1.639 \,\mathrm{fb}$$

final states	main int. state	$\sigma_{\sf nc}$ [fb]	$\sigma_{\sf cut}$ [fb]
$e^-\mu^+ar u_e u_\mu$	WW	152.42	0.736
$e^-\mu^+ar u_e u_\mu u_ auar u_ au$	$WW ightarrow au^+ e^- u u$	26.64	0.317
$e^- e^+ e^- \mu^+ ar{ u}_e u_\mu u_ au ar{ u}_ au$	$ au au$ $e^ e^+$ (γ induced)	25495	0.274
$e^-\mu^+ar u_e u_\mu u_ auar u_ au$	$WW ightarrow au^- \mu^+ u u$	15.57	0.174
$e^-\mu^+ar u_e u_\mu u_ auar u_ au u_ au$	$WW \rightarrow \tau \tau \nu \nu$	2.978	0.146
$e^-e^+e^-\mu^+ar u_e u_\mu$	$WW e^-e^+ (\gamma \text{ induced})$	2.192	0.140
$e^-e^+e^-\mu^+ar u_e u_\mu u_ auar u_ au$	$eeWW \rightarrow ee au\mu u u(\gamma ind)$	0.405	0.070
$e^-e^+e^-\mu^+ar{ u}_e u_\mu u_ auar{ u}_ au$	$eeWW \rightarrow ee au e u u u (\gamma ind)$	0.379	0.064

Hunting sneutrinos

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 0●00	
More results					
MSSM backgrounds contributing after cuts					

$$\sigma_{\mathrm{sign, nc}} = 3.97 \,\mathrm{fb}, \qquad \sigma_{\mathrm{sign, cut}} = 1.639 \,\mathrm{fb}$$

final states	main int. state	$\sigma_{\sf nc}$ [fb]	$\sigma_{\sf cut}[{\rm fb}]$
$\overline{e^-\mu^+\bar\nu_e\nu_\mu\nu_\tau\bar\nu_\tau\widetilde\chi^0\widetilde\chi^0}$	$\widetilde{\chi}\widetilde{\chi} \to \tau^+ e^- \nu \nu \widetilde{\chi}^0 \widetilde{\chi}^0$	3.691	1.102
$e^-\mu^+ar{ u}_e u_\mu u_ auar{ u}_ au\widetilde{\chi}^0\widetilde{\chi}^0$	$\tilde{ au} ilde{ au}$	4.107	0.978
$e^-\mu^+ar u_e u_\mu u_ auar u_ au\widetilde{\chi}^0\widetilde{\chi}^0$	$\widetilde{\chi}\widetilde{\chi} \to \tau^- \mu^+ \nu \nu \widetilde{\chi}^0 \widetilde{\chi}^0$	2.617	0.966
$e^-\mu^+ar{ u}_e u_\mu u_ auar{ u}_ au u_ auar{ u}_ $	$\widetilde{\chi}\widetilde{\chi} \to \widetilde{\tau}\widetilde{\tau}\nu_{\tau}\overline{\nu}_{ au}$	2.744	0.656
$e^{-}\mu^{+}\bar{\nu}_{e}\nu_{\mu}\nu_{\tau}\bar{\nu}_{\tau}\nu_{e,\mu}\bar{\nu}_{e,\mu}\tilde{\chi}^{0}\tilde{\chi}^{0}$	$\widetilde{\chi}^{0}\widetilde{\chi}^{0} \rightarrow \widetilde{\tau}\widetilde{\tau}\nu_{e,\mu}\overline{\nu}_{e,\mu}$	0.501	0.162

Hunting sneutrinos

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥ < ○ < ○
 ECFA Workshop 2008, , Warsaw, 10.6. 2008

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix 00●0
More results				
Results for $\sqrt{s}~=~800{ m GeV}$				

- in principle: many more particles enter the game (approaching thresholds for other $\tilde{\chi}\tilde{\chi}$ productions)
- \Rightarrow Signal gets more complicated !!
 - some backgrounds enhanced, others reduced
 - after smart cuts \Rightarrow similar signal/ background ratio as before
 - largest problem: "higher" edge gets significantly smeared out, also for signal only

$$E_{\rm max} \stackrel{!}{=} 44.5 \, {\rm GeV}$$

total readoff (not shown here): $E_{\rm max} = 43 \pm 1(2) \,{\rm GeV}$ $\Rightarrow m_{\tilde{\nu}} = 173 \pm 2(3) \,\mathrm{GeV} \,\sqrt{2}$

Outline	Introduction and Motivation	Signal and background	Summary and Outlook	Appendix ○○○●	
MSSM addenda					
Superpotential and breaking parts					

• Superpotential in MSSM

$$W = \bar{u}y_u QH_u - \bar{d}y_d QH_d - \bar{e}y_e LH_d + \mu H_u H_d$$

• soft SUSY breaking terms, gauge sector

$$\frac{1}{2}(M_1\widetilde{B}\widetilde{B}+M_2\widetilde{W}^a\widetilde{W}^a+M_3\widetilde{g}\widetilde{g})+h.c.$$

æ

・ロト ・ 一下・ ・ ヨト