Initial studies of the top pair production

Andreas Moll Alexei Raspereza

International Linear Collider ECFA Workshop 10 June 2008, Warsaw Poland

 $\frac{1}{\Delta_{p}.\Delta_{g} \geqslant \frac{1}{2} \, \mathcal{K}}$ $\frac{1}{\text{Max-Planck-Institut für Physik}}$ (Werner-Heisenberg-Institut)

Why precise measurement of top invariant mass (m_t) ?

- m_t is free parameter of the Standard Model
- Electroweak observables including m_t depend on m_H $\sim \log(m_H^2)$

 m_t sets mass constraint on mass of **Higgs** particle

World average top mass: $m_t = 170.9 \pm 1.8 \, GeV$

Why $t \bar{t}$ production analysis for ILC ?

- calculate accuracy for top mass measurement at ILC
- $t \, \overline{t}$ benchmark reaction for detector optimization
- tuning and validation of the reconstruction software

LHC:

```
int. luminosity = 1 fb<sup>-1</sup>(startup of LHC)

\delta m_t(stat.) \approx 1 \text{ GeV} (220 \text{ MeV for } 20 \text{fb}^{-1})

\delta m_t(syst.) \approx 3 \text{ GeV}
```


int.luminosity = $20 \, fb^{-1}$ $\delta \, m_t(stat.) \approx ?$

Goal: estimate statistical error on m_t and width for ILC from direct reconstruction of t decays

The method used in this Analysis provides the consistency check and is complementary to the threshold scan technique.

S.V. Chekanov, V.L. Morgunov *Phys. Rev.* D 67, 074011 (2003)

- Detector simulation using Brahms (Fortran)
- Reconstruction optimized for TESLA design
- btag information not used
- no kinematic fits

int. luminosity =
$$16 \, fb^{-1}$$

 $\delta \, m_t(stat.) \approx 380 \, MeV \, for \, \sqrt{s} = 500 \, GeV$

In the meantime detector design considerably changed.

Mokka – flexible geant4 based detector simulation framework

Marlin – modular and detector independent reconstruction software

- btag information from LCFIVertex package used
- kinematic fitting applied

Studies done for center of mass energy of 500 GeV

500 GeV is the nominal energy for the first phase of ILC running (bulk of luminosity).

fully hadronic $t \bar{t}$ decay mode used:

$$t \, \overline{t} \rightarrow (W^+ b)(W^- \overline{b})$$

 $W \rightarrow q \bar{q}$ branching ratio 44.4 %

$$t \, \overline{t} \rightarrow 6 \, jets$$

int. luminosity =
$$20 \, fb^{-1}$$

 $\sigma = 3.07 \cdot 10^2 \, fb \quad (for \, \sqrt{s} = 500 \, GeV)$
 $\#_{events} = 6140$

Values used in event production

Values used in event production

int.luminosity =
$$20 \, fb^{-1}$$

 $\sigma = 4.15 \cdot 10^3 \, fb \quad (for \sqrt{s} = 500 \, GeV)$
 $\#_{events} = 8.3 \cdot 10^4$

int.luminosity =
$$20 \, fb^{-1}$$

 $\sigma = 3.14 \cdot 10^2 \, fb \quad (for \sqrt{s} = 500 \, GeV)$
 $\#_{events} = 6280$

int. luminosity =
$$20 \text{ fb}^{-1}$$

 $\sigma = 1.4 \cdot 10^4 \text{ fb} \quad (\text{for } \sqrt{\text{s}} = 500 \text{ GeV})$
 $\#_{\text{events}} = 2.8 \cdot 10^5$

Cuts at the generator level to reduce the number of events:

$$E_{vis} > 100 \, GeV$$

 $N_{part} > 50$
 $\log(y_{56}) > -9.0$

$$\#_{\mathit{afterCuts}} = 9080$$

Mokka: geant4 based framework for full detector simulation

Detector used for simulation with Mokka: LDCPrime_02Sc_p01

Interpolation between the two detector concepts GLD and LDC

Magnetic field: 3.5 T

Tracking:

VTX (inner radius=1.5 cm)

 $TPC \quad (R=1.7 \, m, L=4.4 \, m)$

FTD (acceptance down to 7 degrees

in polar angle)

High granularity calorimeters:

ECAL W-Si, 23 χ_o , 1x1 cm²

HCAL Iron—Scintillator, \sim 4-6 λ , 3x3 cm²

Event characteristics $t\bar{t}$:

- high multiplicity
- 6 jet topology
- two jets containing B-hadron decay products
- some fraction of energy is carried away by neutrinos from B-hadron decay.

defines next steps in pipeline:

Particle Flow jet clustering b-tagging cuts

Particle Flow: method to reconstruct four-momenta of all measurable particles in an event

Tracking in VTX/TPC/SiT/FTD, Clustering of hits in ECAL/HCAL

charged particles (e+/-,µ+/-,h+/-):

- Use tracker to measure p
- Identify particle by dE/dx, fraction energy ECAL/HCAL, cluster shapes,...
- \rightarrow particle mass $\rightarrow E^2 = p^2 + m^2$
- 4 momenta reconstructed

neutral particles (γ, h0):

- Use calorimeter to measure E
- Identify particle by fraction energy ECAL/HCAL, cluster shapes,...
 - *→ particle mass*
- direction of p is defined by cluster position w.r.t primary interaction point
- value of p is then given by $p^2 = E^2 m^2$
- 4 momenta reconstructed

for < 100 GeV better resolution in tracking system

ParticleFlow algorithm used:

PandoraPFA

by Mark Thomson

Jet clustering 11

Algorithm used: **DURHAM**

Cluster mode: force to 6 jets

DURHAM short summary:

- for every pair of particles (i, j) compute a closeness measure y_{ij}
- if min(y_{ij})<ycut → particles i and j should be merged

$$y_{ij} = \frac{2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{vis}^2}$$

$$\vec{p}_{jet} = \vec{p}_i + \vec{p}_j$$
 $E_{jet} = E_i + E_j$

 y_{56} is the jet resolution parameter for which the event is resolved from 6 to 5 jet topology.

y₅₆ is used for cuts later on

Cuts used for selection of $t \bar{t}$ events:

 $\log(y_{56})$ y_{ij} value for 6jets \rightarrow 5jets

N_{Tracks} total number of tracks per evt

N_{Particles} total number of particles per evt

bTag First highest bTag value

bTag_{Second} second highest bTag value

 Δm_{3i} mass difference tri – jets

 $|m_{ij}-m_W|$ mass difference of W di – jet and nominal W mass

 $e^+e^- \rightarrow q \bar{q}$

to improve quality the typical CERN e⁺ e⁻ LEP cuts were applied

$$\left| \frac{E_{vis}}{\sqrt{s}} - 1 \right| < \Delta_E \qquad \frac{\left| \sum \vec{p_{||i|}} \right|}{\sum \left| \vec{p}_i \right|} < \Delta_{PL} \qquad \frac{\left| \sum \vec{p_{Ti}} \right|}{\sum \left| \vec{p}_i \right|} < \Delta_{PT}$$

Cuts removed events with large missing energy due to **neutrinos**.

$t \bar{t}$	1674	27.3 <i>%</i>	(sel. eff.)
	56	99.9 <i>%</i>	(rej. eff.)
<i>ZZ</i>	22	99.6 %	(· • j · • · · ·)
9	63	99.3 %	

Take the Tri-Jet (b-Jet/Pair) combination with smallest Δ_{fC} as **final jet** state.

top quark invariant mass

7 constraints were used for kinematic fitting:

$$3 \qquad \sum_{i=1}^{6} \vec{p}_i = 0 \qquad momentum conservation$$

1
$$\sum_{i=1}^{6} E_i = \sqrt{s}$$
 energy conservation

$$\begin{vmatrix} |m_{ij} - m_W| = 0 & mass difference W dijet \\ |m_{kl} - m_W| = 0 & and nominal W mass \end{vmatrix}$$

$$\Delta m_3 = 0$$
 same mass t and \overline{t}

Final result 18

top quark invariant mass

$$L$$
=20 fb $^{-1}$ $\langle m_t
angle \approx$ 175.01 \pm 0.18 $\,$ GeV $\,$ Γ = 1.5 \pm 0.4 $\,$ GeV

Fitting function: Breit-Wigner convoluted with the resolution function

Double Gaussian used as resolution function. Shape of the resolution function fixed.

Invariant mass of top quark was reconstructed using

- full ILD detector simulation
- full hadronic background
- complete reconstruction

Result of this analysis:

$$m_t = 175.01 \pm 0.18 (stat.) GeV (for 20 fb^{-1})$$

Extrapolated for higher luminosity:

$$m_t = 175.01 \pm 0.05 (stat.) GeV (for 300 fb^{-1})$$

Result by S.V. Chekanov and V.L. Morgunov:

$$m_t = 176.08 \pm 0.1 (stat.) \, GeV \, (for \, 300 \, fb^{-1})$$

Analysis will be used for detector optimization and performance studies and is supposed to be included in the Letter of Intent for the ILD detector.

Outlook:

Include additional backgrounds involving leptons in final states:

$$ZZ \rightarrow q q I^{\dagger} I^{\dagger}$$

 $WW \rightarrow q q I \nu$
 $W e \nu, Z e e$

Implementation of the veto on high energy isolated lepton