Electron Reconstruction Study of LDC01Sc and LDCPrime_02Sc_p01 (Based on FullLCDTracking and PandoraPFA)

Hengne Li, Roman Pöschl

LAL ORSAY,

91898 Orsay Cedex, France

• OUTLINE

- Introductory Remarks
- Simulation/Reconstruction
- Comparison of LDC01Sc and LDCPrime

1

- Tracking
- Clustering and Particle Flow
- Conclusions

June 11, 2008

Introductory Remarks

- Electrons will occur in many final states of the physics channels envisaged to be studied at the ILC: e.g. Zh->eeX
- Bremsstrahlung Effects of Electrons
 - Largely depends on the Material Budget of detectors
 - Decreasing the quality and efficiency of tracking
 - The correct reconstruction of electrons maybe the biggest challenge to the capabilities of our detectors and our algorithms
- Electron reconstruction is therefore one of the key ingredients to the optimization studies for and beyond the LOIs

Simulation/Reconstruction

Simulation

- Mokka,
 - LDC01Sc (Sit01 instead of Sit00)

•

•

- LDCPrime_02Sc_p01
- Particle Gun
- Data Samples
 - 10, 30, 50, 70, 90 GeV
 - φ: 0-2π uniform smearing
- LDC01Sc
- θ: Uniform Smearing:
 - |cos(θ)|<0.8 (Barrel)
 - |cos(θ)|<0.98 (All)
- 1000 events each sample

- LDCPrime_02Sc_p01
- θ: Uniform Smearing:
- |cos(θ)|<0.8 (Barrel)
- |cos(θ)|<0.99 (All)
- 5000 events each sample

- Reconstruction Chain:
 - LDC01Sc:
 - Digitizers, etc.
 - FullLDCTracking
 - PandoraPFA
 - LDCPrime_02Sc_p01 (standard reconstruction chain, still unstable):
 - Digitizers, etc.
 - FullLDCTracking (updated)
 - PandoraPFA (updated)
 - (JetFinders, etc.)

Tracking Quality

Results for 30 GeV Electrons

No Large Difference of P and θ

Tracking Quality

Results for 30 GeV Electrons

For D0 and ϕ , LDCPrime seems worse than LDC01Sc

LDCPrime 02Sc p01

-0.5

-0.5

0

n

0.5

0.5

ILC-ECFA 2008 WARSAW

 $\phi^{\text{track}} - \phi^{\text{true}}$ (mrad)

տ^{track}-o^{true} (mrad)

Track Momentum Resolution

6

- Using Crystal Ball Function to Fit : good match of the energy loss spectrum
- Results:
 - (LDCPrime) Better resolution than LDC01Sc for large momentum
 - For Momentum larger than 30GeV, σ(1/P)<6x10⁻⁵(1/GeV)

Track D_0 , ϕ , and θ Resolution

Problems for electron tracks?

- No big difference for muons as checked by Alexei
- D₀ Resolution:

• φ Resolution:

θ Resolution:

June 11, 2008

Clustering and PFA

Results for 30 GeV Electrons

Cluster-Track Association (good!)

June 11, 2008

Clustering and PFA

Energy Resolution: Problems of LDCPrime_02Sc_p01 ?

٠

9

- The first electron study of the new model (LDCPrime)
- Many issues are still unsettled
- Need some investigations of the new model (for electrons)

Conclusion and Outlook

- Tracking and PFA Performances:
 - LDC01Sc: very good!
 - LDCPrime_02Sc_p01: need some investigations together with the authors
- Bremsstrahlung: most painful/challenging nature of electrons
 - Tracking story needs some more efforts (for electrons)

Backup Slides

30GeV e-, mu- and pi- samples of LDC01Sc

12

Identification Variables:

EPratio = E_{ECAL}/P_{Track}
Efrac = E_{ECAL}/E_{total} of a Cluster
R_P = ∑_{i=nHits} r_i E^{0.4}_i / ∑_{i=nHits} E^{0.4}_i of a Cluster

June 11, 2008

- Definition of Efficiency and Rejection Rate
- Efficiency: $Eff = N_{\text{Electrons Identified}} / N_{\text{Electron PFOs from PFA}}$
- Rejection Rate: $Rej = 1 N_{\text{Mis-Identified}} / N_{\text{Background PFOs from PFA}}$
- Efficiency and Rejection Rate for particular Identification Variable
 - EPratio Only (for only Barrel Region)

Efrac Only: (for Barrel Region Only)

- Rp Only: (for Barrel Region Only)
 - Since muons are totally rejected by EPratio
 - Fix the Rp lower cut of 7 mm, adjust upper cut for optimization

14

Overall Efficiencies and Rejection Rates of Different Cut Scenarios

Cut Scenarios: 1 to 6, looser to tighter (or softer to harder)

Cut Scenario	1	2	3	4	5	6
Epratio	0.6	0.65	0.7	0.75	0.8	0.85
Efrac	0.96	0.96	0.97	0.97	0.98	0.98
Rp	51	49	47	45	43	41

June 11, 2008

- e.g. For ee->ZH->eeX ,
 - di-electron momentum mainly within 20 70 GeV
 - Cut Scenario2 and Cut Scenario3 are suitable:
 - Efficiency > 99.5 %;
 - Rejection Rate for pions
 - □ E of > 30 GeV: > 98%
 - E of 10 to 30 GeV: > 95%

June 11, 2008

Tracking Quality

Discussion

Because of bremsstrahlung, more LDCTracks reconstructed than the number of initial electrons.

e.g. for 1000 electrons with momentum of 30GeV, barrel region

☑ 1072 LDCTracks reconstructed

Image: With only one LDCTrack (which is correctly linked)

remaining 138 LDCTracks belong to the remaining 65 electrons.

Mostly, (~53 electrons), due to SiTracks and TPCTracks cannot be linked together by Kalman Filter after photon radiated

i rarely, (~9 electrons), due to more than one

TPCTracks reconstructed in case that photon radiated within TPC,

More rarely, (~3 electrons), due to the conversion of radiated photon into an electron/positron pair.

Conclusion and Outlook

Tracking and PFA Performances:

- LDC01Sc: very good!
- LDCPrime_02Sc_p01: need some investigations together with the authors
- Electron Identification object achieved
 - Efficiency > 99.5%; Rejection Rate for pion > 98%
 - EID cuts optimization for physics study is on going
 - Likelihood implementation is on going
- Bremsstrahlung: most challenging nature of electrons
 - Tracking should be improved or optimized for electrons