Status of Tracking Software & ILD Tracking Performance

Alexei Raspereza, Steven Aplin ECFA Workshop, Warsaw 10/06/2008

Outline

- Overview of ILD Tracking System
- Tracking Software Updates
- Performance of ILD Tracking
 - * Resolution on track parameters
 - \star V⁰ reconstruction
 - * Track finding efficiency
 - * PFA related performance
- Summary

ILD Tracking System Mokka Model LDCPrime_02Sc

External tracking detector (SET)

Structure of Tracking Package

Updates of Tracking package

Digitization

 Hit smearing along ladders in the laddered structures of VTX (C.Lynch)

• Tracking

- Implementation of realistic shapes describing VTX ladders in MaterialDB processor for Kalman fitter (A. Moll)
- Gear steerings and MaterialDB processor are made consistent with recent Mokka models (S. Aplin)
- Inclusion of SET and ETD in pattern recognition
- Dedicated V⁰ finder processor (in development stage)

Visualization

Marlin processor VertexViewer ⇒ visualization of tracks (useful debugging tool)

Digitization Procedure & Spatial Point Resolutions

• Simple digitization : Gaussian smearing of SimTrackerHits positions ⇒ TrackerHits

• <u>TPC</u>

Realistic parametrization of the TPC resolutions provided by LCTPC group (Ron Settles) [implemented by Steve]

$$\sigma(\mathbf{r} \cdot \phi)^{2} = \sigma_{0}^{2} + D^{2} \cdot L_{drift} / N_{eff}$$

$$\sigma_{0} = (50 \mu m)^{2} + (900 \mu m \cdot sin \phi_{local})^{2}$$

$$N_{eff} = 22 / (sin\theta \cdot pad_height[mm]/6)$$

$$D = 25 \mu m / cm^{1/2}$$

$$\sigma(z)^{2} = (400 \mu m)^{2} + L_{drift} [cm] \cdot (80 \mu m)^{2} / cm^{1/2}$$

- <u>VTX</u> : $\sigma(z) = \sigma(r \phi) = 4 \mu m$
- **<u>SIT, SET</u>** : $\sigma(z) = \sigma(r \phi) = 10 \mu m$

• **<u>FTD, ETD</u>** : $\sigma(r-\phi)=\sigma(r)=10\mu m$

 θ dependence of spatial point resolution of Si detectors has been neglected

Tracking in MarlinReco

- Tracking in TPC : LEPTrackingProcessor (C++ wrappers of DELPHI code, author : S.Aplin)
 - Inward search for continuous track segments. Kalman track fit
 - Input : collection of TPC hits. Output : collection of TPC tracks
- Tracking in Si detectors : SiliconTracking processor
 - Search for hit patterns compatible with the helix model. Kalman track fit
 - Input : collection of VTX, FTD & SIT hits. Output : collection of Si tracks

FullLDCTracking processor

- Association of Si & TPC track segments. Assignment of left-over hits to found tracks ⇒ full track recovery (loopers). Kalman track fit. Extrapolation of tracks to ECAL
- Input : collections of VTX, FTD, SIT & TPC hits + Si & TPC tracks.
 Output : Full LDC tracks + cov. matrices

Diagnostics of Tracking Pulls & χ^2 **Distributions**

Impact of SET on p_T Resolution

~40% improvement in $1/p_T$ resolution at <u>high p</u> perhaps too aggressive assumption on $\sigma(r-\phi)_{SET} = 10 \mu m$

Momentum Resolution Central Tracks. Model LDCPrime_02Sc

Impact Parameter Resolution Central Tracks. Model LDCPrime_02Sc

Track Parameter Resolutions Forward Region. Model LDCPrime_02Sc

Forward region [10° $\leq \theta \leq$ 20°] \Rightarrow Tracks reconstructed with FTD

 $Planar z\text{-}Discs \Rightarrow$ $\sigma_{\phi} \propto \sigma_{\theta} / sin\theta$ $\sigma_{z0} \propto \sigma_{d0} / tan\theta$

Reconstruction of V⁰

- Dedicated V⁰ reconstruction procedure implemented as separate Marlin processor V0FinderProcessor
- Signature :
 - two tracks with opposite charges (track charged is defined by the sign of the track parameter Ω)
 - consistent with coming from single point
 - tracks do not originate from primary interaction vertex
- Reconstructed 4-vectors of vertices are stored in collection of type **ReconstructedParticle**
- Three mass hypotheses (K^0_s , Λ^0 , γ) and vertex positions are stored in additional collection of type LCFloatVec
 - (6 elements in vector :
 3 mass hypotheses + 3 coordinates of vertex)

Importance of SIT for V⁰ID $e^+e^- \rightarrow Z^0 \rightarrow s\bar{s}$ sample @ 91.2 GeV

∆Z [mm]

K^₀ mass Events 250 $m(K^0_s)$ with SIT no SIT 200 150 100 50 0.495 0.485 0.49 0.5 0.505 0.51 m(π⁺π⁻) [GeV] ΔZ_{V0} Entries 350 $\Delta z(V^0)$ 300 250 200 150 100 50 0 0.5 -0.5 0 1.5

Performance of V⁰ Identification

- Good impact parameter resolution ⇒ sensitivity to neutral particles originating from secondary vertices
- Two parameters steer V⁰ finding :
 - cut on tracks misdistance Δd
 - cut on vertex radius $\mathbf{r}_{\mathbf{v}\mathbf{0}}$
- Default cuts : \mathbf{r}_{vo} > 2cm $\Delta \mathbf{d}$ < 2mm
 - $\Rightarrow V^0 \, finding \, efficiency = 93\%$, fake rate < 0.1%

V⁰ finding : input for heavy flavor tagging!

(Rejection of $K^0_{\ S}$ & γ -conversions)

Track Finding Efficiency tt→6jets @ 500GeV. LDCPrime_02Sc

PFA Related Performance Resolution on charge energy in $tt \rightarrow 6jet$

Evaluation of $\sigma_{\text{tracks}} \Rightarrow$

- energy contained in the reconstructed tracks VS. energy of charged particles at the generator level
- V⁰ and kinks are properly taken into account in reconstruction
- albedo tracks removed

Left tail due to missing tracks (finite track finding efficiency)

- Recent developments of tracking package closely followed updates of tracking system in Mokka
 - SET & ETD included in pattern recognition
 - Gear steerings and MaterialDB processor appropriately modified to account for a more realistics models of tracking devices in Mokka
- Tracking package is brought into consistency with the recent Mokka models to be used for the mass MC production
- Tracking package extended ⇒ dedicated V⁰ finder implemented (inclusion in MarlinReco shortly after ECFA Meeting)
 - code can be used in heavy flavour tagging (K^0 's and γ -conversions rejection)
- Tracking performance of the baseline ILD model LDCPrime_02Sc meets ILC requirements
 - $\delta(1/p_T) = 2 \cdot 10^{-5}$ (with SET) $\sigma(IP) = 4.3 \mu m \oplus 9.1 \mu m / p \cdot \sin^{3/2} \theta$
 - tracking efficiency : 98.4% (p_{track} >0.5GeV) ; 99% (p_{track} >1GeV) @ low fake rate of \simeq 0.4% [tt \rightarrow 6jets events @ \sqrt{s} =500GeV]
- Code is ready to be used in physics studies and has been already successfully applied in a few analyses