## An electromagnetic calorimeter for ILD

Henri Videau Laboratoire Leprince-Ringuet Henri.Videau@in2p3.fr

Henri Videau LLR-École polytechnique CNRS/IN2P3



## An interesting piece of detector

toward a common design

which exists in three technological options Si diodes 5x5 mm2 Sci pieces 1x4 cm2 MAPS but in one common structure with 2 geometrical variants 8/12

currently under beam tests to validate the design and Geant4

Henri Videau LLR-École polytechnique CNRS/IN2P3





## The LDC eightfold structure with square hole

### 5 modules per stave

**ECAL** 



Henri Videau LLR-École polytechnique CNRS/IN2P3

## The module structure for Si or Sci-W

or MAPS



Henri Videau LLR-École polytechnique CNRS/IN2P3



T. Takeshita

## Scintillator fingers 1x4 cm<sup>2</sup>



Henri Videau LLR-École polytechnique CNRS/IN2P3



# The sensitive elements for Si-W slabs and wafers





#### from R. Pöschl presentation

Henri Videau LLR-École polytechnique CNRS/IN2P3

## or a MAPS version: the TPC (TeraPixel Calorimeter)

**Nigel Watson** 

IR



Henri Videau LLR-École polytechnique CNRS/IN2P3





### The end-cap structure



## a square hole? even in the yoke?

#### Denis Grondin LPSC

Henri Videau LLR-École polytechnique CNRS/IN2P3



## ECAL – 8 vs 12 staves



Henri Videau LLR-École polytechnique CNRS/IN2P3

## « AHCAL » + ECAL



Henri Videau LLR-École polytechnique CNRS/IN2P3

Warszawa, June 2008





electronics

## Progressive development of the adequate electronics

Skiroc and FLC-SiPM by OMEGA

for a granularity of about 5x5 mm2 dynamics integrated highly multiplexed reduced consumption

Henri Videau LLR-École polytechnique CNRS/IN2P3

Warszawa, June 2008





Warszawa, June 2008

2 types of cooling systems to test:

#### **Copper pipes brazed Heat pipes** $(\mathbf{r})$ A column, (25 mm wide minimum) to ensure quick thermal copper pipe system's connection 4x6 mm Cold plate for column End of PCB (DIF) copper bloc Cold plates for slab rail wedge inter-slab Thread rod M3 + screw + wedge Mini Heatpipe Wedge Both to be tested Thermal pieces on: EUDET and copper pipe (faces of cold plate) 10x12 mm demonstrator

#### Denis Grondin LPSC

Henri Videau LLR-École polytechnique CNRS/IN2P3



#### **Beam tests**

## Hadronic showers in SiW ECAL

### Run300696 vs Simulations Transverse Energy Distribution









Takuma Goto June 3rd

#### Henri Videau LLR-École polytechnique CNRS/IN2P3

## **Physics tests in Sci-W ECAL**

#### Energy resolution of 3 configurations



at centre of detector, extruded+fibre much worse: effects of strip uniformity enhanced in this region

#### **Daniel Jeans**

#### Henri Videau LLR-École polytechnique CNRS/IN2P3

## Conclusions

Backed by a strong R&D effort in Calice, the ECAL for ILD is developed in a comprehensive way:

- a mechanical structure at ~full scale,
- the ancillary systems, cooling, current supplies,
- the integration in the global calorimeter and in the detector
- the adequate electronics,
- the adequate software.

this with still different options.

## The point is not so much to be ready to build but rather to prove that we would be able to ... remaining open to new solutions

Henri Videau LLR-École polytechnique CNRS/IN2P3

Warszawa, June 2008