

ECFA2008 Warsaw June 11

...from my talk on ILC detector maintenance needs at ireng07 meeting at SLAC (Sept.07)...

Ron Settles MPI-Munich

For the polarization discussion@Warsaw, some thoughts on:

CalibrationZ-peak @Lep 2 => ILCPush-pull frequency

Z-peak

- •At Lep2, all experiments except Opal requested ~ 1-2 days running at the Z-peak during a year for calibration, usually because some incident (eg, beam-loss) had damaged some subdetector which had to be recalibrated.
- ·At Lep1 (and at SLC) this wasn't necessary because we were running at the Z-peak and taking "calibration data" (incidentally, also used for real physics) all the time.
- •Therefore only the Lep2 experience can give is a guess as to what to plan for at the ILC.

Email 2005 (at Daegu ACFA8) to Mark Thomson:

Thanks Mark,

So the conculsion is, taking the year 2000 as an example and rounding, for Z-peak calibration running:

at Lep2 we had:

=>per detector<= 3/pb at the beginning of a year, and one run of 0.5/pb during a year

For the ILC, we might then request

at ILC:

=>per detector<= 10/pb at the beginning of a year, and one run of 1/pb during a year

since the detector(s) will be more demanding. Does this sound reasonable?

Cheers,

Ron

Z-peak

- •So a fundamental question for the ILC machine is: how easy/difficult will it be to run at the Z-peak, if e.g. datataking is at 250 or 350 GeV (c.m.s.) that year?
- •This was without considering push-pull in 2005. An important question here is, will we need calibration data after each push-and-pull?

Push-pull frequency
Now is maybe a good time to look briefly at the physics of the
ILC. From my talk at the Arlington LC Workshop January 2003:

WHY LC?

TWO-PRONG ATTACK at LC on PHYSICS beyond the SM

PRECISION MEASUREMENT

Higgs – Top – WW –
$$qar{q}$$
 – GZ – M $_{
m W}$

- ⇒ High statistics
- ⇒ Polarized beams

e.g.,
$$\mathrm{M_{Z'}}~\sim~5~\mathrm{TeV}$$

DISCOVERY

Susy - Alternative Theories

e.g., 'Susy Forest'

→ **NECESSARY** COMPLEMENT to LHC

PHYSICS → **MACHINE**

Executive Summary

HIGGS

DISCOVERY & PRECISION MEAS. of PRODUCTION, COUPLINGS

 10^5 Higgs

few %

20%

$$\rightarrow$$
 500 fb $^{-1}$ @ $\sqrt{s}\sim m_Z+m_W+25$ GeV ~230 GeV acc. to EW fits

TOP

PRECISION MEASUREMENT

Mass $\delta \mathsf{m}_t \sim 100~\mathsf{Mev}$

Z charges
$$egin{array}{c} \mathsf{v}_t = 1 - rac{8}{3} \cdot s_W^2 \ \mathsf{a}_t = +1 \end{array} \sim 1\%$$

Mag., El. dip. mom. \sim 1%, \sim 10^{-18} Yukawa Coupling $\rm g_{ttH}^2\sim5\%$ \rightarrow 300 fb $^{-1}$, 1000 fb $^{-1}$ @ 400 GeV, 700 GeV

$$\rightarrow$$
 300 fb⁻¹, 1000 fb⁻¹ @ 400 GeV, 700 GeV polarized beams

WW

PRECISION MEAS.

Mag.dip., El.quad. mom.

$$egin{array}{ll} \mu_{\gamma,Z} &= -rac{\mathrm{e}}{\mathrm{M}_{\mathrm{W}}}[z+\delta\kappa_{\gamma,Z}+\lambda_{\gamma,Z}] \ Q_{\gamma,Z} &= -rac{\mathrm{e}}{\mathrm{M}_{\mathrm{W}}^2}[1+\delta\kappa_{\gamma,Z}+\lambda_{\gamma,Z}] \end{array}
ight. \left. egin{array}{ll} \delta\kappa,\delta\lambda\sim 10^{-3} \end{array}
ight.$$

 \rightarrow few 100 fb⁻¹ @ 500 GeV polarized beams

SUSY

DISCOVERY & PRECISION MEAS.

Meas. all Susy parameters

→ many 100 fb⁻¹ up to highest energy polarized beams

BEYOND E-W

PRECISION MEAS. & DISCOVERY

 Z' , f^* , H^{ns} , LQ , TC , $\mathsf{n}_D > 4 \dots$

 \rightarrow few 100 fb⁻¹ up to highest energy polarized beams

Z - PEAK

PRECISION MEAS.

 $\delta \sin^2 heta_W \sim 10^{-5}, \delta M_W \sim 6 \; {
m MeV}$

→ 1 Giga Z

polarized beams

Example of Experimental Programme

$$\sqrt{s} = 9$$

$$5 \times 10^{34}$$

$$cm^{2}s^{-1}$$

Year	Physics	$\sqrt{s}~{ m Gev}$	$\int \mathcal{L} dt \; fb^{-1}$	Years Runnin
2019	Commissioning			1
2020	Higgs	250	200	2
2022	Тор	350	200	1
2025	WW, HHH	500	500	2
2028	Susy			
+ y	Yukawa ttH	750	1000	2
+NP=	New Physics			
10	∫ GZ	91	50	1
y \	$ m igl(M_W$	161	100	1

Physics → **Detector Goals**

$$egin{aligned} \bullet & ext{vertexing} \ & e.g. \ t \overline{t} \end{aligned} \qquad \delta(\mathrm{IP}_{\phi,z}) \lesssim 5 \mu \mathrm{m} \bigoplus rac{10 \mu \mathrm{m} \mathrm{GeV/c}}{\mathrm{p} \sin^{3/2} heta} \ \end{aligned}$$

$$ullet$$
 tracking $\delta(1/p_{
m t})\lesssim {
m Now~2x10\text{-}5/(GeV/c)}$ e.g. Higgs

$$\begin{array}{ll} \bullet \; \text{fwd. dirn} & \delta(1/p_t) \lesssim 3 \times 10^4 \text{GeV/c}^{-1}, \\ \text{e.g. lumi, t--ch.phys.} & \delta(\theta) \lesssim 2 \times 10^{-5}, \cos \theta \lesssim 0.99 \end{array}$$

• jet energy
$$\delta({
m E/E})\lesssim {
m Now~0.25/\sqrt{E}}$$
 @ Zpeak from Particle Flow

$$\begin{array}{ll} \bullet \mbox{ backgrounds} & \mbox{min. material inside Ecal,} \\ \mbox{ robustness} & \vec{B} \gtrsim 3 \mbox{T, granularity} \end{array}$$

R & D, prototyping to shoot for these goals

To make progress in understanding, we have to distinguish two different phases:

- (1) Running for precision measurements
- (2) Running for discovery

DISCUSSION

(1) Precision measurements

-Here frequent change is not so important; once a year is enough unless a detector problem crops up.

-A well calibrated detector is essential. For this Z-peak running is one of the most valuable tools we have. At Acfa8, Mark Thompson and I made the following gestimate for ILC based on Lep2 experience:

- -- 10/pb Z-peak at the beginning of a year (after detector maintenance, meaning it had been taken apart and put back together
- -- 1/pb Z-peak later in case of incidents/accidents during a year.

-A similar procedure was followed at Lep2 every year and was valuable/necessary for all 4 detectors. (At Lep1 we were running on the Z-peak all the time and therefore were taking calibration data all the time.)

(2) Discovery

-Here a frequent change is important, and therefore the change should be as rapid as possible.

(For example, at Lep2 we did this, went through a "Higgs-discovery" mode, where—this is an example for the machine and not the detector--went through frequent cycles of filling to the highest possible energy, running for an hour or two, then refilling rapidly after a beam loss, in 1-2 hours typically.)

-But we have to remember that at the ILC good MDI teams and a lot of planning/training/experience will be needed to achieve the fastest possible "Formula-1-Pitstop"-type switch, and

WILL A CALIBRATION RUN BE NEEDED EACH TIME???

