

Development of readout electronics for ILC Forward Calorimeter

Marek Idzik, AGH-UST Kraków

on behalf of the FCAL collaboration

Outline

- LumiCal readout architecture & design
- Measurements of Front-end prototypes
- Measurements of ADC prototypes
- □ Summary & plans

LumiCal readout architecture

- Front-end (~32channels) and ADC(? channels) ASIC
- □ First prototypes in AMS 0.35 μm
- Design in progress (S/H, DAC, Bias)

Challenges of LumiCal front-end

Calibration mode S/N~10 for MIP

Charge sensitive amplifier

 $Q_{max} \sim 10 \text{ pC}$ $Cf \sim 10 \text{ pF}$

Calibration & Physics mode
Variable gain

 $\Delta t \approx 300 \text{ ns}$, high occupancy

PZC +Shaper T_{peak} ~ 60ns

Front-end architecture

- □ Preamp. feedback: passive R_f or MOS
- Preamp: I_{pre}~2.5mA, PMOS input,
 Cf~10pF (physics), Cf~0.5pF (calibration)
- □ Shaper: 1st order, T_{peak}~60ns
 - Alternative configurationGated-Reset

ADC architecture

- Pipeline architecture
- □ 1.5 bit per stage
- Fully differential

- 10 bits resolution
- Input dynamic range 2V
- Maximum sampling frequency 35 MHz
- Low power consumption

1.5 bit stage architecture

First prototypes

12 channels front-end ASIC

8 stages of pipeline ADC

submitted in June 2007

8 chan. - continuous shaping

4 passive Rf feedback

4 triode MOS feedback

4 chan. - Gated-Reset

No reference

voltages.

No digital

correction.

No ...

Front-end measurements

AGH

- 40 ASICs received
- PCB designed & produced
- Test Setup established
- Tests with generator and external capacitance. Tests with sensors just started at DESY
 - Pulse shape
 - Gain
 - Noise
 - Pulse rate
 - Crosstalk, Power consumption

Pulse shape

Very good charge sensitivity in physics mode (same for MOS and passive R, feedback)

Slight sensor capacitance dependence in calibration mode (gain for MOS and R_f feedback different by design)

Gain

Constant gain in physics mode

Slight gain decrease with growing sensor capacitance in calibration mode

Noise

- Measurements done with external capacitance. Need to be confirmed with sensor and particles
- In calibration mode noise below 0.4 fC good MIP sensitivity (SNR > 10)
- Noise for MOS feedback similar to R_f. Feedback
- Results with true RMS meter consistent with spectrum analyser

WWW AGH

Pulse rate

Front-end works well up to ~3 MHz continuous input rate. In calibration mode slight dependence on sensor capacitance – as expected from simulations

Crosstalk, Power

Crosstalk measurements done with PIN photodiode and impinging laser light

Cr osstalk		
Feedback:	MOS	R _f
Calibration	0.08 %	0.25 %
Physics	0.95 %	1.5 %

R_f area larger than MOS Feedback capacitance area in physics mode larger than in calibration Work on Layout needed

Power consumption about 8.9 ^{mw}/_{channel} consistent with simulations.

Gated-Reset prototype

- Gated-Reset charge amplifier fully functional
- Measurements in progress...

ADC measurements

A G H

- 40 ASICs received
- PCB designed & produced
- FPGA based setup allowing full ADC characterization

- Static measurements
 - INL, DNL, ENOB
- Dynamic FFT measurements
 - SNHR, THD, SFDR, SINAD, ENOB

DAQ working up to ~120MHz sampling frequency

Static ADC tests

- □ Maximum Integral Nonlinearity found ± 2.5LSB, could be improved
- Differential Nonlinearity generally OK, but few missing codes found
 (DNL=-1) need to be corrected

Dynamic FFT ADC tests

Example of FFT spectra

Results

- Stable functionality up to 35 MHz in agreement with simulations
- Harmonic distortions (THD) limit the resolution, to be improved

Measurements status

- First prototypes of front-end channels and pipeline ADC stages designed, produced and found fully functional
- Front-end parameters measurements completed, in good agreement with simulations. Measurements with sensors and fanout still needed.
- □ Final front-end architecture not yet decided (continuous, gated...?)
- Setup for ADC measurements established
- Pipeline ADC stages measurements completed. Small nonlinearity errors found, their sources identified

Summary & milestones

- First front-end and ADC prototypes successfully tested
- Few months of delay according to initial schedule (partially because the sensors has not been produced yet)
- Improved ADC version being prepared for submission design finished, layout in progress
- Track&Hold design completed, layout started
- DACs design almost completed
- Bandgap references design almost completed
- □ Next submission september 2008