CALICE SiW Electromagnetic Calorimeter: Test beam performance

Laurent MORIN, on behalf of the CALICE Collaboration

Laboratoire de Physique Subatomique et de Cosmologie de Grenoble CNRS/IN2P3 UJF INPG Grenoble

> ECFA 2008 10th of June, 2008

Outline

- The calice collaboration
- Description of the calorimeter
- Results from the 2006 test beam
 - Energy response of the calorimeter
 - Space development of the shower

Conclusion

CAlorimetry for LInear Colider Experiment

281 physicists/engineers from 47 institutes and 12 countries

The goal of this collaboration is to test different calorimeter prototypes for PFA calorimetry at ILC, and to share:

- Beam-test facilities
- Data acquisition
- Analysis environment

Our prototype has been tested all around the world:

- DESY (2006)
- CERN (2006, 2007)
- FNAL (2008)

The calice collaboration uses the grid tools to share and analyse the data During 2008 test beam the concept of a "remote control room" at Desy has been successfully tested. The DESY people have participated to the last test beam period from their remote control room.

Prototype of electromagnetic calorimeter

A high granularity calorimeter

The SiW calorimeter is composed of:

- Absorber: 30 layers of 1.4, 2.8 and 4.2 mm plate of W (= $24X_0$)
- *Active element*: 30 layers of Si diodes (1*x*1 cm², 6480 channels available)

The experimental display

< 同 > < 三 > < 三

The CALICE collaboration at CERN in 2006

- The H6 line of SPS at CERN was used
- This line provides e, π and μ
- Electrons and positrons have been taken from 6 GeV up to 45 GeV

The statistics is performed after event selection

Energy (GeV)	particle	date	statistics (kevts)
6	e ⁻ , e ⁺	Oct	10.6
10	e ⁻ , e ⁺	Aug, Oct	55.9
12	e ⁻ , e ⁺	Oct	32.1
15	e ⁻ , e ⁺	Aug, Oct	60.4
20	e ⁻ , e ⁺	Aug, Oct	76.9
30	e ⁻ , e ⁺	Aug, Oct	43
40	e ⁻	Aug	27
45	e ⁻	Aug	129.3

Electron selection

• E_i is the energy measured in the layer i

$$E_{meas} = \sum_{i=0}^{i=9} E_i + 2 \sum_{i=10}^{i=19} E_i + 3 \sum_{i=20}^{i=29} E_i$$

• Use Cherenkov signal to reject π and μ

Control of the uniformity response

CALICE SiW Ecal TB performance

Laurent MORIN, CALICE (LPSC Grenoble)

The guard ring effects

• Fit as a function of the shower barycenter:

ECFA 2008 11 / 18

Correction of the guard ring effects

The energy response as a function of the shower barycenter is now flat

Improvement of the energy resolution

Energy resolution

- Selection of the events with the barycenter far away from the interwafer gap
- Gaussian fit in the interval [-1σ, 2σ]

Linearity of the response

- The beam spread is measured to be: $\frac{\Delta E}{F} = \frac{0.12}{F} \oplus 0.1\%$
- After taking this into account, linearity better than 1%

Energy resolution

• The energy resolution is fitted by : $\frac{\Delta E}{E} = \frac{a}{\sqrt{E}} \oplus c$ With $a = (16.69 \pm 0.13) \%$ and $c = (1.09 \pm 0.07) \%.$

The shower development

The shower profile is reasonably well reproduced by simulations

ECFA 2008 17 / 18

- Several millions of events were successfully recorded at CERN in 2006 with the SiW Ecal prototype
- The non-uniformity due to the guard-rings can be corrected
- The linearity is better than 1%
- The energy resolution leads to a sampling term of 16.7% and a constant term of 1.09%
- The 2007 CERN data study is ongoing
- More data are being taken at Fermilab (2008)

