
Calibration and Monitoring of a Scintillator HCAL with SiPMs

Angela Lucaci-Timoce

On behalf of the CALICE analog HCAL group

Overview

1 Introduction
2 HCAL Calibration
3 Time Dependence (’Monitoring’)
4 Conclusions

Angela Lucaci-Timoce ILC-ECFA Workshop , 8 - 12 June 2008, Warsaw 1/17



The Scintillator HCAL Prototype

1 m
3 calorimeter:

Purpose:
test shower simulation and validate
particle flow algorithm (talk by E.
Garutti on Thursday)

establish the SiPM technology on large
scale

7608 channels, each read out by a SiPM

38 layers in sandwich structure:
scintillator tiles + 2 cm steel as absorber
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Test beams: 2006/2007 CERN, 2008
FNAL

Silicon Photomultiplier (SiPM)

developed by MEPhi/Pulsar

matrix of independent pixels, each
similar to an avalanche
photodetector in Geiger mode

Bias voltage ∼ 50 V

Gain ∼ 106

1 mm
µ20    m

Pixels of the SiPM

Scintillating tile

Wavelength
shifting 
fiber

3 cm

SiPM
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Calibration and Monitoring System

SiPM response depends on temperature
and voltage
⇒ LED monitoring system

One LED illuminates 18 SiPMs and one
PIN photodiode to monitor the LED
signal
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T  = temperature sensor
CMB = calibration and monitoring board

Functionalities of the LED system:
1) gain calibration at low intensity

light

2) provide reference pulses monitored
by PIN diodes (not used)

3) provide full dynamic range for
checking the SiPM response
function

Temperature monitored by
temperature sensors
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HCAL Calibration Chain

SiPM signal =
P

Nfired pixels

But: limited number of pixels (1156)
and finite pixel recovery time
(20-500 ns) ⇒ non-linear response
curve

From measured amplitude to MIPs:

E [MIP] =
A

AMIP

· fresp

„

A

Apixels

«

fresp - SiPM response function
AMIP ← MIP calibration
Apixel ← gain calibration

Saturation curves provided by ITEP
(Russia) for each SiPM, measured
with ’bare’ SiPM on the test bench
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HCAL MIP Calibration with Muons

use muon particles as MIPs

Gaussian + Landau fit of the
amplitude for the 216 tiles of every
HCAL module

Zero-suppression: reject hits below
0.5 MIP ⇒ MIP uncertainties affect
reconstructed energy and noise level A [ADC]
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MIP Efficiency = MIP
σMIP

∼ 93%
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MIP Calibration with Hadrons

1 For a deep-site detector, (cosmic) muons
may not be so many

2 Idea (proposed by Alexei Raspereza,
2004): use hadrons as additional MIPs,
since λi ∼ 17 cm (∼ 8 layers) ⇒ long
tracks within hadron showers are
abundant

3 Recent studies done in the Munich group
(Frank Simon), see later

Angela Lucaci-Timoce ILC-ECFA Workshop , 8 - 12 June 2008, Warsaw 6/17



Gain Calibration

Purposes:
obtain the pixel scale for applying saturation correction
monitoring (direct look at the SiPMs)

Procedure:
use the LED system and take spectra at low intensity light for all channels
fit single photon spectra
Gain ∼ difference between 2 single photon peak

ADC channels
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Efficiency for the CERN test-beam:
96.9% calibrated (1.7% LEDs off, 1.4% missing calibration)
modules with missing calibrations calibrated at DESY
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Saturation Correction

Use simple model to describe SiPM response function, e.g.:

Npixel = Ntotal · [1− exp (−Np.e/Ntotal )])

Compare ITEP and CERN measurements
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Clear shift between Ntot from ITEP and CERN measurements (about 20% higher at
ITEP)

Reason: ⇒ fiber does not illuminate whole SiPM
⇒ less effective pixels contributing to light detection
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Saturation Rescaling in Electron Data

In-situ saturation curves differ from ITEP measurements
⇒ Rescale the saturation curves with a factor Ntot(CERN)/Ntot(ITEP)

Example: e
+ data at CERN 2007
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Energy spectrum with scaled response closer to data

Still deviations ⇒ need exact beam profile to judge how well the saturation is
simulated
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Time Dependence: Voltage and Temperature Variations

SiPMs are operated in Geiger mode: Vbias = Vbreakdown + ∆V (∼ 50− 60 V)

SiPM signal (charge) depends on gain and Geiger efficiency: A ∝ G · ǫ

Both depend on overvoltage: ∆V = Vbias − Vbreakdown
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For x = A, G : dx/dT = −dx/dU · dUbreakdown/dT

Ratio of amplitude and gain coefficient is the same for V and T dependence
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Voltage Dependence

G and A dependencies

Measured at ITEP ⇒ 2 groups of SiPMs
observed, depending on the applied voltage
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CERN: different test set-up (different DAQ,
etc) ⇒ dependencies are reproduced
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Relative dependencies: ITEP vs.
CERN

N. FeegeA. Kaplan,
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Temperature Dependence

CERN measurements

Measured in test-beam only (i.e. CERN)

Temperature profile for one T sensor
N. Feege

Gain dependence on T for one SiPM:
N. Feege

Relative dependencies
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Relation of the Dependencies

From
dG

dT
=

dG

dV
·
dV

dT
and

dA

dT
=

dA

dV
·
dV

dT
follows

dA/dT

dG/dT
=

dA/dV

dG/dV

Testing this hyphothesis:

N. FeegeA. Kaplan,

mean
spread

T and V dependencies are correlated ⇒ correcting for one variable accounts for the
other
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Temperature Correction in Hadron Data

Hadron data analysed by the Munich group (Frank Simon)

’Deep analysis’ algorithm of Vassily Morgunov used to select track-like clusters in
HCAL

Amplitude spectra of single tiles fitted with exponential + Landau fit

Tile very close to beam axis

clear MIP peak

Tile outside beam axis

large background contribution
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Temperature Correction in Hadron Data - continued

No temperature correction

Temperature effect from slope of
amplitude vs temperature

With temperature correction

slope consistent with zero
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Gain Adjustements

Aim: correct the effects of temperature changes on the SiPM gain

Method: determine dG/dV dependency and adjust bias voltage to correct gain

deviations: ∆U =
G − G0

dG/dV

Check (FNAL data): Gpredicted = Gbefore + ∆U ·
dG

dV
⇐⇒ Gadjusted ???

⇒ corrected gain has the expected behaviour
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Conclusions

1 Scintillator HCAL:
first experiment to handle large sample of SiPMs (∼ 104)

2 Temperature dependence can be corrected for;
benefit to be demonstrated

3 Gain monitoring:
way to look at each SiPM directly

4 Voltage adjustement:
interesting possibility to correct for gain dependence on temperature
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