SiLC Digitization Package

Z. Doležal, Z. Drásal, P. Kodyš, P. Kvasnička

Institute of Particle and Nuclear Physics Charles University Prague

Introduction

Electric potential distribution

Weighting potential

- Digitization (SiStripDigi) geometry:
 - Geant4 hits transformation from global to local reference system
- Digitization (SiStripDigi) phys. processes:
 - Generation of e-h pairs (E_{eh} =3.65 eV)
 - Drift of e-h pairs in electric field
 - Diffusion of e-h due to multiple collisions
 - Lorentz shift of e-h pairs in magnetic field
 - Mutual microstrip cross talks (wrt. AC or DC coupling of individual microstrips)
 - Noise: sensor, electronics ...
 - Current type collected: e, h, both
- Clustering (SiStripClus):
 - Cluster finding (seed strips + neighbouring strips) based on COG algorithm
 - Cluster transformation back to global ref. s.
 - Sensor hits calculation (wrt. single or double-sided structure of sensors)

Digitization & ILC Software Framework

- Digitization software fully based on ILC framework (input: LCIO collect. of SimTrackerHits):
 - **SiStripDigi** Marlin processor performing digitization → output: LCIO collect. of TrackerPulses
 - SiStripClus Marlin processor performing cluster finding → output: LCIO collect. of TrackerHits
 - Other classes:
 - SiStripGeom helper class that provides geometry information obtained from Gear xml file + transformations from local to global or global to local reference systems
 - RombIntSolver integration solver class utilizing Romberg integration method
- ILC software framework:
 - **Mokka:** Geant 4 based, full simulation tool using a realistic det. geometry available via a MySQL database
 - **LCIO:** Linear Collider I/O framework, which defines a data model for ILC → output: *.slcio file
 - **GEAR:** Geometry description toolkit for ILC analysis and reconstruction software → output: *.xml file
 - MARLIN: ILC Modular Analysis&Reconstruction tool that enables modular approach (processors) to development of reconstruction and analysis code based on LCIO

Digitization & Geometry

- Detector geometry complex geometry approach; MySQL database → Mokka → GEAR interface
 - Geometry accessed via SiStripGeom interface class
 - Only barrel type detectors supported (right now)
 - Global ref. system defined in Mokka
 - Local ref. system defined as follows:
 - (0,0,0) position corresponds to the right down corner of each wafer
 - x, y, z coordinates are positive, z = 0 corresponds to the strip side
 - strips parallel to y-axis, numbered in positive direction of x-axis
 - Detector system information:
 - Number of sensors + sensor type, resp. Gear type
 - Magnetic field
 - Sensor, resp. Si wafer (for double-sided), information:
 - Sensor position in space
 - Sensor rotation wrt. position point (axes: z, x',z'')
 - Sensor number of wafers
 - Sensor sizes + thickness
 - Wafer mutual stereo angle for double-sided sensors
 - Wafer thickness
 - Wafer pitch
 - Wafer number of strips

Geometry of double-sided sensors

Digitization & Parameters

- SiStripDigi processor:
 - Geometry parameters:
 - sensor (wafer) thickness
 - sensor pitch
 - number of strips
 - Digitization parameters:
 - sensor bias voltage
 - sensor depletion voltage
 - sensor temperature
 - sensor capacitances: $C_{interstrip}$, $C_{backplane}$, $C_{coupling}$
 - CMS-like noise (common mode subtracted noise)
 - type of current collected by electrodes
 - Precision parameters:
 - space precision $\approx 5 50 \, \mu \text{m}$
 - relative angle precision $\approx 0.001 0.01$
 - relative drift time precision $\approx 0.001 0.01$
- SiStripClus processor:
 - CMS-like noise (common mode subtracted noise)
 - S/N ratio for seed strips
 - S/N ratio for adjacent strips

Digitization & El. Field, Drift

- Electric field of abrupt p-n junction:
 - Instead of areas around the strips, the analytically expressible field of p-n junction:

$$E(z) = -\left(\frac{V + V_{dep}}{d} - \frac{2z}{d^2}V_{dep}\right)$$

is very similar to what one obtains when solving Poisson equation; moreover, the field is constant for given z and various x!

- Parameters: $V_{dep} = 80 \text{ V}, V_{bias} = 150, 200, 250$

- Drift of e-h pairs:
 - Represented by the eq. of motion (1st order ODE):

$$v(z)=\mu(E(z),T).E(z)$$

- where the mobility is strongly dependent on elec. field and sensor temperature:

$$\mu(E(z),T) = \left(\frac{\mu_s/E_c}{(1+(E(z)/E_c)^{\beta})^{1/\beta}}\right)$$

- Mobility parameters for Si oriented in <111> direction (different for e, h): $\mu_s(T)$, $E_c(T)$, $\beta(T)$
- ODE integrated numerically using Romberg meth.

Digitization & Diffusion, Lorentz Shift

- Diffusion of e-h pairs:
 - *e*, resp. *h*, are during the drift diffused by multiple collisions
 - Distribution given by Gaussian law:

$$dN = \frac{N}{\sqrt{4\pi Dt(\vec{r})}} \exp(-\frac{\vec{r}^2}{4Dt(\vec{r})}) d\vec{r}$$
$$D = \left(\frac{kT}{q}\mu(E,T)\right)$$

- where **D** denotes diffusivity given by Einstein relation and **t** the drift time

- Lorentz shift of e-h pairs in mag. field:
 - *e*, resp. *h*, are during the drift deflected in magnetic field (Lorentz shift of charge carriers):

$$\tan(\theta_L) = \frac{\int_z^d \mu(E(z)) r B dz}{\int_z^d dz}$$

- where *r* denotes so-called Hall scattering factor:
 - r = 1.13 + 0.0008.(T-273) for e
 - r = 0.72 0.0005.(T-273) for **h**
- Solution obtained numerically using Romberg meth

7

Digitization & Crosstalk, Current Type

• Cross talk effect:

- The charge generated on each strip is for both DC and AC coupled sensors redistributed to the neighbours according to following relation:

$$i_{neighbour} = i_{strip} \frac{C_i}{C_i + C_c + C_b}$$

- where C_i , resp. C_b , resp. C_C , denotes:
 - capacitive coupling between individual strips
 - resp. strip-to-backplane coupling
 - resp. load capacitance (for AC coupling only)

• Current type:

- In contrast to full simulation (using weighting field approach to calculate the current induced on each strip), here, either *e* component or *h* component is taken as a signal (resp. as a collected charge) or both weighted by a weighting potential of a p-n junction

SiStripDigi & TB Results

- Simulation of SCT detector response to a beam of 180 GeV/c pions (ATLAS CERN 2000 2004), comparison with real experimental data and verification of SiStripDigi package reliability:
- Simulation parameters:
 - Hamamatsu barrel detector (with binary read-out) simaluted:
 - Sensor thickness = $285\mu m$
 - Si wafer pitch = $80 \mu m$
 - $C_{interstrip} = 6 pF$
 - \bullet $C_{\text{backplane}} = 1.77 \text{ pF}$
 - $C_{coupling} = 120 \text{ pF}$
 - ENC 1500 e ≈ 0.24 fC
 - Discriminator threshold: 1 fC (detector efficiency higher than 99 %)
 - Multiple scattering resolution $\sigma = 6 \mu m$
 - Telescope resolution $\sigma = 5 \mu m$

SiStripDigi & TB Median Charge

- S-curve measurement:
 - Fit with a skewed error function:

$$\varepsilon = \varepsilon_{max} f \left(x \left[1 + 0.6 \frac{e^{-\xi x} - e^{\xi x}}{e^{-\xi x} + e^{\xi x}} \right] \right)$$
$$x = (q_{thresh} - \mu) / \sqrt{2} \sigma$$

- Experiment: (3.5 ± 0.1) fC
- SiStripDigi: (3.41 ± 0.04) fC

SiStripDigi & TB Incidence Angle

- Median charge versus inc. angle with or without magnetic field:
 - 2 mutually opposite effects:
 - path length $\approx 1/\cos(\alpha)$
 - charge sharing effect
 - Experiment:
 - Red markers: B = 0 T
 - Blue markers: B = 1.56 T

SiStripDigi & TB Cluster Size

- Cluster size = the median number of strips that collect charge (the charge at each strip in cluster must be above threshold set)
 - Experiment:
 - Red markers: B = 0 T
 - Blue markers: B = 1.56 T

Conclusion & Status

- New MARLIN processors **SiStripDigi** (v. 00-02) + **SiStripClus** (v. 00-00) available:
 - SiStripDigi: represents detailed digitizer with all relevant physical processes included
 - SiStripClus: represents cluster finder
 - Functionality verified on real data (SCT TB)
 - still interesting to verify the same measurements with analog read-out sensors (SiLC TB 2008)
 - Input: Marlin config file: *.steer file; Gear geometry file: *.xml file; data file: *.slcio file
 - Output: SiStripDigi: *.slcio file (TrackerPulse) → SiStripClus: *.slcio file (TrackerHit)
 - Software documentation available → use Doxygen to generate it
 - To ease the building process CMAKE configuration files written → use CMAKE to build it
 - linking dependent on following libraries: CLHEP, GEAR, LCIO, MARLIN (SiStripClus depends on SiStripDigi)
 - CPU time consumption:
 - AMD Athlon 64 3200+ \rightarrow 1.2 ms per event (1 event \approx 3 hits approximately)

Digitization & Backup Slides

TBSiDet & Mokka Status

- New testbeam geometry (TBSiDetectors) available:
 - classes created for TB simulations and for digitization package development
 - **TBSiDetectors03**: geometry driver (defines a number of sensors being tested, which one is DUT, if double or single-sided detectors being used, sensor positions, alignment parameters: rotation, shift ...)
 - TBSiSensitive03: redefines a sensitive detector class
 - **TBSiHit03**: redefines a tracker hit class when saving in LCIO format the SimTrackerHitImpl class used
 - SimTrackerHitImpl parameters: *MCParticle* *, *prestep position*, *step length*, *particle momentum* defined at prestep position, *deposited energy*, *time stamp*, *cellID* (for double-sided wafers: 1.wafer cell ID corresponds to sensor ID, 2.wafer cell ID corresponds to sensor ID + 100)
 - MySQL configuration files: when using a local copy of central database, these files can be used to configure the testbeam geometry ...

TBSiDet & ILC GEAR status

- New testbeam Gear description (TBSiDet) available:
 - classes created for TB simplified geometry description; used by Marlin processors
 - **TBSiDetParameters(Impl)**: describes main parameters of test beam setup of silicon detectors: TB *name*, *TB type* (with or without DUT), *number of sensors*, DUT *ID*, *testbeam layout* (returns sensors layout to read or write new sensors)
 - **TBSiLayout(Impl)**: describes sensor parameters position, rotation, number of wafers, rad. length ..., and except reading info, enables adding a new sensor

```
<gear>
  Gear XML file automatically created with GearXML::createXMLFile ....
-<detectors>
 -<detector name="TBSiDet" geartype="TBSiDetParameters">
   -<setup name="TestSetup" type="WithDut">
     -<sensors number="1" idDut="0">
       -<sensor name="Dut" id="0" sensitivity="yes">
        -<wafers number="1" stereoAngle="1.0000000000e+01" pitch="1.000000000e+02" nStrips="256"
         radLength="9.366073396e+00">
           <dimensions sizeX="5.000000000e+00" sizeY="5.000000000e+00" sizeZ="3.000000000e-02"/>
          </wafers>
          <dimensions thickness="3.000000000e-02"/>
          <position posX="0.000000000e+00" posY="0.00000000e+00" posZ="0.000000000e+00"/>
          <rotation theta="0.000000000e+00" phi="0.00000000e+00" psi="0.00000000e+00"/>
        </sensor>
      </sensors>
     </setup>
   </detector>
 </detectors>
</gear>
```

*.xml output example

Full Simulation & Electric Field

• Numerical solution — obtained from MAXWEL 2D; detector volume has been divided into so-called elementary cells and the Poisson equation with the following boundary conditions has been solved:

Full Simulation & Signals

- Each e, resp. h, when drifting to the electrode, generates a relevant signal on each strip
- The current induced at time t on k^{th} electrode is evaluated by a Shockley-Ramo theorem: $i_k(t) = -q \vec{v} \cdot \vec{E}_{wk}$, where E_{wk} represents the weighting field associated to the k^{th} electrode and v the drift velocity; it describes the geometrical coupling between e, resp. h, and the electrode

