

Silicon microstrip sensor R&D for the ILC Experiments

Thomas Bergauer, Marko Dragicevic, Stephan Haensel for the SiLC R&D collaboration

Presented by Winfried Mitaroff

ECFA Warsaw (9-12th June 2008)

Linear Collider Constraints

- Future Linear Collider Experiment will have a large number of silicon sensors, even when using TPC-based main tracker
- Radiation damage in Silicon almost non-existent in contrast to LHC
- Concept for strip tracker:
 - long strips (10-60cm)
 - low material budget: avoid too many cables, cooling, support
 Therefore:
 - No active cooling only due to power cycling of FE electronics (1/100ms duty cycle)
 - Time structure of beam:

SilC Silicon Sensor Baseline

SilC sensor baseline

- FZ p-on-n sensors: n-bulk material, p+ implants for strips
- high resistivity (5-10 kOhm cm)
- Readout strip pitch of 50µm
 - Possibly intermediate strips in between (resulting 25µm pitch)
 - Smaller pitch becomes very complicated (Pitch adapter, bonding, charge sharing,...)
- Thickness around 100-300μm
 - mostly limited by readout chip capabilities (S/N ratio)
- Low current: <1nA per strip
 (Due to long integration time noise mostly defined by current and resistors)

Baseline for inner layers:

- 6" inch, Double sided, AC coupled

Baseline for outer layers:

8" (12"?) inch, Single sided, Preferably DC coupled (cheaper)

Minimize material budget

- Multiple scattering is crucial point for high-precision LC experiment
- Minimize multiple scattering by reducing material budget of detector modules itself

- Silicon sensor
- pitch adapter
- FE hybrid
- readout chip
- Long-term goal: Integrate pitch adapter into sensor
 - Connectivity of strips to readout chip made by an additional oxide layer plus metal layer for signal routing
 - Readout chip bump-bonded to sensor like for pixels

In-sensor routing and bump-bonded chip

Concept Design

- Connection between readout chips and sensor in additional metal layer on the sensor (red lines)
 - → No pitch adapter necessary
- Readout chips bump bonded on the sensor (grey chips)
 - → No hybrid necessary
- Supply lines and data link to readout chips via kapton (brown T-piece)

Additional Benefits:

- Assembly process less complicated
 → fewer parts
- Modules are more robust
 - → no delicate microbonds

Bump-/Stud-bonding

- Readout chip needs to be connected upside down onto sensor (flip-chip bonding)
- Two methods:
 - Indium Bump-bonding needs treatment of both chip and sensor with indium
 - Advantage: fine pitch
 - Stud-bonding doesn't need special treatment
 - Minimum pitch: ~80um
- 1st step: Design to allow both, wire and stud-bonding with same chips and sensors

HPK Sensor Order

- Single-sided AC coupled SSD
- Sensor size: 91,5 x 91,5 mm² (± 0,04 mm)
- Wafer thickness: approx. 320 μm
- Resistivity: such that depletion voltage: 50 V < Vdepl < 100 Volt
- **Biasing scheme**: poly-Silicon Resistor with 20 M Ω (± 5 M Ω)
- Number of strips: 1792 (= 14 x 128)
- **Strip pitch:** 50 um pitch, without intermediate strips
- Strip width: 12.5 um
- Main detector have been/will be used to
 - Build prototype modules to test new readout chip (Testbeam took place in Oct '07 at SPS@CERN)
 - Build modules for LC-TPC project
 - Build long ladders

- We ordered 35 HPK Sensors
 - 30 "normal sensors"
 - 5 "alignment sensors"
- Have been delivered Oct '07

IV and CV Results

- We requested a resistivity such that depletion voltage is between 50 and 100V
- All sensors fully deplete between 47-58V, average at 52.5V
 - Resistivity is 6.7 kOhmcm (rough estimate since more exact measurement on TS diode possible)
 - Safe operating voltage: 70-90V
- IV measurements up to 800V show some breakthroughs around 200-300 V

What we learned already: poly-Si

- Bonding problem for daisychained sensors (long ladders)
 - Because of the length of the poly-resistor the wire bonds connecting both sensors must be 5mm long (at 50um pitch)
- We did some bonding tests and this seems to be a problem.
 - Bonds bend and touch each other
- Flipped sensors
 - No alternative since "near" sensor needs to be bonded on both sides
- Other alternative: use punchthrough or FOXFEST biasing, since it requires less space (achievable resistor value still unclear)

HPK Multi geometry mini sensor

Sensor order at HPK contains several smaller sensors as well:

1. Mini sensors to test FOXFET and punchthrough biassing to circumvent problem with large poly-resistors

128 channels with pitch=50um with different biasing schemes

- 2. A multi-geometry mini sensor:
- 256 strips with 50um pitch
- 16 zones with 16 strips each
- Layout constant within each zone
- Strip width and number of intermediate strips vary between the zones

strip width	intermediate
[µm]	strips
5	no
10	no
12.5	no
15	no
20	no
25	no
5	single
7.5	single
10	single
12.5	single
15	single
17.5	single
5	double
7.5	double
10	double
12.5	double

Testbeam with multi-geometry mini sensor

- 120GeV Pions from CERN SPS accelerator
- Took place last and this week (until June 4th)
- The goal of this testbeam:
 - Evaluate the best strip geometry of silicon strip sensors with 50 micron pitch to achieve the highest possible spatial resolution
 - For this purpose we are using a dedicated mini sensor with different zones, each with a different strip geometry:
 - Different strip widths
 - 0, 1 or 2 intermediate strips
 - We are using the fine resolution of the EUDET pixel telescope to get high precision tracks to determine the residuals for our DUTs [Devices under Test]

DUT Module

9 modules have been built in Vienna:

8 Modules together in the Testbeam Setup

DAQ is using APV25 chip

- APV25 is readout chip of CMS Silicon Tracker
- Frontend (FE) Hybrids are connected to Repeater Boards (REBO)
- Two 9U VME Boards with FADCs are reading data and digitalize them
- PC running CVI (LabWindows) is used for online monitoring and to store data

Controller board has LVDS I/O to directly read trigger and timestamp data from TI U box

DAQ Hardware and Software

- DAQ Hard- and Software (including predecessors) has already been used for more than 10 testbeams in the past.
- Thus, everything is pretty stable.

Preliminary Results

Resolution across all zones:

(without telescope data)

- Residual RMS = 4.99 um (against neighbor layers 2+4 only)
- Residual RMS = 6.35 um (REFERENCE against all 7 other layers) -> needs more sophisticated alignment

Data Analysis

Offline data analysis of DUT data:

- Pedestal subtraction
- Common mode correction
- Hit finding, Clustering
- Peak time reconstruction

Existing Vienna analysis software

Track Reconstruction (non existing)

We have three possibilities for tracking:

- Use EUDET software as proposed by Ingrid
 - Need to transfer our data into LCIO format.
- Use SiLC (Prague group) analysis software written in ROOT
 - Transfer data from telescope and DUT to ROOT files
- Include tracking algorithms in Vienna Analysis code
 - Transfer data from telescope into proprietary ROOT files

Summary

- Sensor baseline established:
 - FZ, p-on-n, high resistivity, 100-300um thick, 50um pitch
 - preferably DC coupled, otherwise biasing via PolySi, PT or FOXFET
- SiLC Goals:
 - Establish companies to deliver silicon detectors for future HEP experiments
 - First batch with HPK designed and successfully tested by SiLC Collab.
- Outlook / Future plan
 - Develop design, build and test detectors with fine pitch for ILC
 - Dual metal layer structure for in-sensor routing
 - Develop cheap, industrial bump-bonding technology
 - Detector thinning
 - 6" Double sided sensors
 - 8" (12"?) single sided DC sensors

