Electromagnetic Background Tests for the Interaction Point Feedback System

Philip Burrows

John Adams Institute Oxford University

G. Christian, C. Clarke, B. Constance, H. Dabiri Khah, T. Hartin, C. Perry, C. Swinson John Adams Institute, Oxford University

A. Kalinin, Daresbury Laboratory

R. Arnold, S. Molloy, S. Smith, G.R. White, M. Woods, SLAC

Philip Burrows

Outline

- Introduction
- ILC interaction point intra-train feedback system
- Beam-beam interaction and EM backgrounds
- T488 experiment at SLAC Endstation A
- Conclusions

Intra-train feedback system - concept

Last line of defence against relative beam misalignment

Measure vertical position of outgoing beam and hence beam-beam kick angle

Use fast amplifier and kicker to correct vertical position of incoming beam FONT: Feedback On Nanosecond Timescales

FONT4 prototype at KEK/ATF

Philip Burrows

FONT4 prototype at KEK/ATF

Reminder of FB performance

Reminder of FB performance

ILC interaction region (schematic)

Philip Burrows

Nominal IP feedback BPM location

Philip Burrows

Pair-induced EM backgrounds

Beam Parameters Scheme	Number of Pair Particles	Average Energy (GeV)	BPM hits	
Scheme 1	195652	10.8	5141	
Scheme 2	164370	10.6289	4497	
Scheme 3	121966	10.8947	3057	
Scheme 4	49720	12.3421	1074	
Scheme 5	124273	9.58301	2321	
Scheme 6	272218	10.6636	9686	
Scheme 7	320352	10.9809	12314	
Scheme 8	193166	11.2826	5127	
Scheme 9	237749	11.5317	8758	
Scheme 10	192976	11.3083	6399	
Scheme 11	85218	12.8034	2623	
Scheme 12	eme 12 247683		9287	
Scheme 13	500457	13.8549	25016	
Scheme 14	678811	15.5845	80443	

Philip Burrows

Beam Parameters Scheme		Number of Pair Particles	Average Energy (GeV)	BPM hits	
Sahama 1					
Scheme 1		195652	10.8	5141	
Scheme 2	Dorom	164370	10.6289	4497	
Scheme 3	Parall	121966	10.8947	3057	
Scheme 4	space	for 49720	12.3421	1074	
Scheme 5	500 G		9.58301	2321	
Scheme 6		272218	10.6636	9686	
Scheme 7		320352	10.9809	12314	
Scheme 8		193166	11.2826	5127	
Scheme 9	Param	eter 237749	11.5317	8758	
Scheme 10	cnaco	192976	11.3083	6399	
Scheme 11	space	85218	12.8034	2623	
Scheme 12	1 TeV	LC 247683	10.1212	9287	
Scheme 13		500457	13.8549	25016	
Scheme 14		678811	15.5845	80443	

Philip Burrows

Beam Parameters Scheme	Number of Pair Particles	Average Energy (GeV)	BPM hits	
Scheme 1	195652	10.8	5141	
Scheme 2 Prir	naries 164370	10.6289	4497	
Scheme 3	121966	10.8947	3057	
Scheme 4	49720	12.3421	1074	
Scheme 5 CrO	SSING: 124273	9.58301	2321	
Scheme 6 50 -	- 700k 272218	10.6636	9686	
Scheme 7	320352	10.9809	12314	
Scheme 8	193166	11.2826	5127	
Scheme 9	237749	11.5317	8758	
Scheme 10	192976	11.3083	6399	
Scheme 11	85218	12.8034	2623	
Scheme 12	247683	10.1212	9287	
Scheme 13	500457	13.8549	25016	
Scheme 14	678811	15.5845	80443	

Philip Burrows

Beam Parameters Scheme	Number of Pair Particles	Average Energy (GeV)	BPM hits	
Scheme 1	195652	10.8		5141
Scheme 2	164370	B	M hits	4497
Scheme 3	121966	10.8947	bunch	3057
Scheme 4	49720	12.3421	bunch	1074
Scheme 5	124273	CI30	ssing:	2321
Scheme 6	272218	1).66 <u>36</u>	80k	9686
Scheme 7	320352	10.9809		12314
Scheme 8	193166	11.2826		5127
Scheme 9	237749	11.5317		8758
Scheme 10	192976	11.3083		6399
Scheme 11	85218	12.8034		2623
Scheme 12	247683	10.1212		9287
Scheme 13	500457	13.8549		25016
Scheme 14	678811	15.5845		80443

Philip Burrows

Pair-induced EM backgrounds

FONT Test Module for ESA

FONT Test Module (T-488)

Philip Burrows

Overview of T-488 Experiment

- Used 28.5 GeV SLAC beam to simulate ILC EM background environment:
- Mode 1:

Large beam ~ 1mm diameter, 10**6 < Q < 10**8 Beam steered onto front of FONT module

• Mode 2:

Beam passed through upstream thin radiator Main beam + halo that strikes module

Overview of T-488 Experiment

- Used 28.5 GeV SLAC beam to simulate ILC EM background environment:
- Mode 1:

Lose primary beam signal in BPM Vary noise signal at BPM by varying Q

• Mode 2:

Still get primary beam signal in BPM Tune noise signal at BPM by varying X0 Studied impact on stripline BPM signals

Mode 1: beam scan across module: stripline BPM signals

10**7 beam

-0.02

-0.04 -0.06

EE.

Mode 1: beam scan across module: stripline BPM signals

55

65

-0.02

-0.04 L 60

Time / ns

10**7 beam

Mode 1: beam scan across module: stripline BPM signals

Modelling of noise on BPM strips

Modelling of noise on BPM strips

Mode 2: primary beam + halo

Mode 2: results: worst case: 5% foil

Peak voltages foil in vs foil out

Foil thickness	Foil IN		Foil OUT	
	Mean / V	std / V	Mean / V	std / V
5%	3.99	0.09	4.00	0.09
3%	4.00	0.08		
1%	3.99	0.09	4.01	0.09

See no effect within statistics (1000 pulses) < 10 micron effect in position at ESA < 100 nm at ILC c.f. FB BPM resolution needed ~ few microns

Summary + conclusions

- EM backgrounds were source of concern for operation of a feedback BPM in ILC interaction region
- Built a material model of ILC extraction line
- Used SLAC/ESA 28.5 GeV beam to simulate ILC EM bgds
- Developed simple BPM noise model; reproduces data
- Under background conditions c. 1000 x worse than ILC we saw no degradation of BPM operation
 - < 100nm degradation in resolution at ILC

-> current design of IP FB system looks robust