#### SiD Optimization Status

M. Breidenbach, J. Jaros



SiD Optimization M. Breidenbach

#### Review: Method proposed at SiD RAL Meeting

• Assume Mark Thomson's ILD Parameterization of  $\Delta E_{jet}/E_{jet}$ :

$$\alpha = 0.42 \left(\frac{B}{4}\right)^{-0.31} \left(\frac{R}{1.78}\right)^{-0.61} (1 + 21.6e^{-\frac{N}{7.1}}) \qquad \begin{array}{l} {\sf E}_{\sf jet} = 180Ge \\ {\sf V} \end{array}$$

• Using SiD Cost Model, find R, B, and  $\lambda$  (= 4.3N/40) which minimize cost for a given  $\Delta E_{jet}/E_{jet}$ .



• Use Tim Barklow's study of ZHH, which gives  $\Delta g/g$  vs  $\Delta E_{jet}/E_{jet}$ .



2



#### The Answer Last Time



#### What's Wrong with this Picture?

RAL talk listed many caveats:

- The cost model has not been reviewed/checked
- Mark's Parameterization is applicable to LDC. How applicable is it to SiD?
- Tim's input curve was derived assuming (in fast MC) a jet energy resolution  $\Delta E/E = \alpha/\sqrt{E}$ , not  $\Delta E/E = constant$ , which more accurately describes a PFA calorimeter.

### Cost Caveats

#### • Concerns regarding:

- Fundamental estimates such as mechanical tech time/m<sup>2</sup> of calorimeter surface or electronics tech time/ tracker detector.
- Conversion of tech time to \$ (although it is available in hours)
- Many important unit costs are very uncertain, e.g. tungsten (for the EMCal); Si detectors (for the tracker and EMCal), and Iron (for the magnet).
- Several technology decisions are not made. In particular there is no serious baseline choice for the HCal detector technology. RPC's with KPiX readout is assumed.
- The costs have not been adequately reviewed by the engineering team.
- The costs have been developed in US dollars. The effects of the rapidly changing dollar/Euro ratio is not addressed.
- There may still be errors!
- The cost numbers are U.S. style, with labor, contingency, indirects, and escalation. The inflation rate is taken as 3.5%, and the construction start date is 2012. These numbers may be optimistic!

### Is Mark's Parameterization valid for SiD?

 Marcel Stanitzky has studied a SiD-like detector, SiDish, using Mark's Pandora PFA program.

SiDish has dimensions and aspect ratio appropriate for SiD, but still has TPC tracking, the LDC Ecal, and Scintillator/Fe Hcal.

- Tracker radius=1.25m
- Tracker Z=1.7 m
- ECAL SiW 20+10 layers, 1x1 cm tiles
- HCAL Fe-Scint 40 layers 3x3 cm tiles
- Same Calorimeter layout as LDC00Sc (besides ECAL 30+10->20+10)
- 5 T Field
- Does the performance of SiDish agree with Mark's parameterization?
- How well does the performance of SiDish reflect what the performance of SiD will be?

# SiD Using Mark's scaling Law



Science & Technology Facilities Council Rutherford Appleton Laboratory Marcel Stanitzki



#### SiD = SiDish HCal issues?

No, but we can estimate how large the differences are.

 SiD's Fe/RPC's might under-perform SiDish's Fe/scintillator. The RPC response is not yet optimized, and the pixel sizes are different). Both Mark and Marcel see small effects in present Pandora:

| Saiatillatar | Detector   | 91 GeV |       | 200 GeV |       | RPC |  |
|--------------|------------|--------|-------|---------|-------|-----|--|
|              |            | α%     | Error | α%      | Error |     |  |
| Scintillator | LDC00Sc    | 24.6   | 0.3   | 29.7    | 0.5   |     |  |
|              | LDC00      | 27.0   | 0.5   | 31.7    | 0.6   |     |  |
|              | SIDish     | 27.9   | 0.4   | 35.4    | 0.7   |     |  |
|              | SIDish_rpc | 31.7   | 0.5   | 38.9    | 0.7   |     |  |

### $\Delta E/E$ might be as much as 10% worse Or it might be better. Needs optimized PFA.

# SiD = SiDish EMCal Issues?

• The SiDish ecal is a 20+10 version of the LDC ecal, total 20  $X_0$ , with 1.4 mm and 4.2 mm W radiator thicknesses.

SiD's EMcal is also 20 + 10, but with 2.5mm and 5.0mm radiator thicknesses, totaling 29  $X_0$ .

| Detector Tag     | Radiator   | Layers | <b>X</b> <sub>0</sub> | uds (9 <sup>.</sup> | 1 Gev) | uds (200 GeV) |       |
|------------------|------------|--------|-----------------------|---------------------|--------|---------------|-------|
|                  | Thickness  |        |                       | α%                  | Error  | α%            | Error |
| SIDish           | 1.4/4.2 mm | 20+10  | 20                    | 27.9                | 0.4    | 35.4          | 0.7   |
| SIDish_ecal40    | 1.4/4.2mm  | 30+10  | 24                    | 27.1                | 0.5    | 33.9          | 0.6   |
| SIDish_ecal_eq37 | 1.41 mm    | 37     | 15                    | 28.1                | 0.4    | 37.6          | 0.6   |
| SIDish_ecal25_50 | 2.5/5.0 mm | 20+10  | 29                    | 27.3                | 0.4    | 35.1          | 0.6   |

SiDish and SiD Ecals roughly equivalent for PFA, For the cases studied. No use was made of the smaller SiD pixels. SiDish and not SiDish\_ecal\_25\_50 was used in subsequent studies..

#### SiD = SiDish Tracking Issues?

- Mark Thomson, in his talk at the SiD RAL meeting, stressed the importance of TPC pattern recognition to recognize VO's, decays, interactions, and loopers.
- He indicated ~ 3% (absolute) improvement in the jet energy resolution parameter  $\alpha$ , corresponding to ~ 10% improvement in  $\Delta E/E$  after a lot of homework.
- Two differences between LDC and SiD could be significant for Pandora:
  - Amount of material in the tracking volume (which needs more study)
  - Differences in pattern recognition capability.

# $\Delta E/E$ could be worse by 10% (upper limit)

# SiD = SiDish

- SiD could be better
  - There is a strong impression that PFA's (and Pandora) needs to be carefully tuned for a particular detector configuration. This has not yet been attempted.
  - Pandora does not use SiD's small EMCal pixels and probably does not take advantage of the small Moliere radius.
  - SiD probably has less material in the forward direction upstream of the endcap EMCal.
- And remember that there are several non PFA issues:
  - Background robustness
  - Background control
  - Superb momentum resolution

### New Input for PFA Optimization

- Tim Barklow has redone his fast MC study of measuring the triple higgs coupling, assuming a more realistic jet energy resolution distribution, and assuming the jet energy resolution  $\Delta E/E$  is constant vs energy, not ~  $\alpha/\sqrt{E}$ . He's added an analysis of the error in the chargino mass vs  $\Delta E/E$  too.
- Use Mark's parameterization for  $\alpha$  appropriate for 100 GeV jets, to select R, Z, and lambda for a given resolution:  $\alpha = 0.315 \left(\frac{B}{4}\right)^{-0.19} \left(\frac{R}{1.68}\right)^{-0.49} (1 + 6.3e^{-\frac{N}{8.0}})$
- Use Marcel's study of SiDish performance vs  $Z_{ecal}$  for forward jets, to select  $Z_{ecal}$  so as to match jet energy resolution in the endcap with that in the barrel (at 100 GeV)

#### New Input for $\Delta g/g$ vs $\Delta E/E$

#### T. Barklow Analysis has now been redone with $\frac{\Delta E_{jet}}{E_{jet}}$ that reflects current PFA status triple Higgs coupling error vs. genuine $\frac{\Delta E_{jet}}{E_{jet}}$ is plotted in BLACK $BR(H \rightarrow b\overline{b})=0.678$ 0.65 ٢ • 0.6 with gluon rad $e^+e^- \rightarrow ZHH$ 0.55 $\rightarrow qqb\overline{b}b\overline{b}$ $\Delta g_{hhh}$ 0.5 $g_{\scriptscriptstyle hhh}$ 0.45 $\sqrt{s} = 500 \ GeV$ ÷ • $L = 2000 \ fb^{-1}$ 0.4 w/o gluon rad 0.35 $\Delta E_{jet}/E_{jet} = .06 \rightarrow .03$ equiv to 1.2× Lumi 0.3 w/o gluon rad , flat $\Delta E/E$ 0.25 2 M. Braidenbach 12 0 8 10 6 SiD Optimization 11 June 08 (%) Е **J**80 3 jet

#### T. Barklow New Process: Chargino Mass vs $\Delta E/E$



# Jet Energy Resolution vs Z for Forward Jets (cos $\theta$ = 0.92)

#### M. Stanitzki

| Detector Tea    | u (50 | GeV)  | u (100 | GeV)  | u (250 GeV) |       |
|-----------------|-------|-------|--------|-------|-------------|-------|
| Delector rag    | α%    | Error | α%     | Error | α%          | Error |
| SIDish          | 39.9  | 0.4   | 40.2   | 0.4   | 69.1        | 0.2   |
| LDC00Sc         | 32.0  | 0.3   | 29.6   | 0.3   | 79.8        | 0.8   |
| SIDish_r125_z15 | 43.4  | 0.4   | 44.2   | 0.5   |             |       |
| SIDish_r125_z19 | 38.9  | 0.4   | 38.3   | 0.4   |             |       |



11 June 08

### Cost vs $\Delta E/E$ Old and New



11 June 08

SiD Optimization M. Breidenbach

#### **Bottom Line**



#### Accounting for SiD $\neq$ SiDish

 We conservatively estimate that SiD's performance is 0%-20% worse than that of SiDish, to account for TPC/Si Tracker and Scint/RPC Hcal differences.



#### SiD Cost vs HCal Thickness

Rtrkr = 1.25, B=5 T



Ztrkr = 1.7



#### EMCal Cost comments

• Baseline design + 2.05 m Ztrkr:

20 layers @ 2.5 mm 10 layers @ 5.0 mm \$679M

• Change to:

30 layers @ 1.4 mm 10 layers @ 4.2 mm \$732M

~\$5M/layer (Si is not cheap!!!)

#### Status

- Still looks like SiD stretch Rtrkr = 1.25 m, B = 5 T, AHcal = 4.5, Ztrkr 2.05 m - is on the high performance/high cost side of the performance vs cost "knee"
- Is the optimum different with a different PFA? Is there any case to push Ztrkr?
- Can we improve heal segmentation information to refine the optimization?
- We have non PFA reasons to hold onto Rtrkr = 1.25 m and B = 5 T. Only the PFA (presumably not yet optimal for SiD) argues for thicker HCal and larger Ztrkr. Both are probably good for higher energy jets, but they are expensive:
  - Ztrkr = 1.7, AHcal = 4.0, cost = \$605
  - Ztrkr = 1.7, λHcal = 4.5, cost = \$628
  - Ztrkr = 2.05, AHcal = 4.5, cost = \$680
- More work on higher jet energies is needed (ILC @ 1 TeV!)