SUSY and Cosmo WG: summary

G. Bélanger LAPTH

Status of CMSSM

ILC measurements

DM and ILC

Conclusion

SUSY

- One attractive extension of SM
- Symmetry fermion -boson
- Solution to gauge hierarchy problem
- Radiative EW symmetry breaking –light Higgs
- Gauge coupling unification
- Could be link to string theories
- Cold dark matter candidate if R-parity conservation
- MSSM, CMSSM, extensions...

Constraints on SUSY – status

- EWPO : $M_{w_s} \sin^2 \theta_{eff}^l$
 - M_w prefers light stops
- B observables:
 - Br(B_s--μμ)< $5.8x10^{-8}$ disfavours very large tanβ and light H/A
 - b -sγ constrain m_0 - $m_{1/2}$, tanβ dependent
- $(g-2)_{\mu}$ prefers light smuons/gauginos

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{theo}} = (27.5 \pm 8.4) \times 10^{-10},$$

• Tevatron lower limits : squarks/gluino

Constraints on CMSSM

• CMSSM: MSSM with GUT scale universal condition (4 1/2 parameters- $m_0,m_{1/2}, A_0$, $\tan\beta$, $sign(\mu)$) and MFV

• χ^2 fit: Large area of parameter space allowed

• Constraint on mass scale : $\Delta \chi^2 < 4$ -- LSP<450GeV, other sparticles could be in reach of ILC500 or 1000

Heinemeyer et al., 0805.2359

Including DM

- Assume R parity conservation
- Include WMAP/SDSS and DM relic density

 $\Omega h^2 = 0.104 + 0.0073 / -0.012$

• Strong relation m_0 - $m_{1/2}$ for fixed values of A_0 and $tan\beta$

- MCMC approach+ Bayesian statistics: fits of CMSSM +SM parameters
- 90%CL no constraint yet on SUSY spectrum best fit at low m_0 - $m_{1/2}$

Allanach et al. 0705.0487

Dark matter – Searches

- Direct detection search for WIMPS interaction with nuclei in large detectors -- experiments are improving : new limits
- Xenon and CDMS $-\sigma^{SI} > 4x10^{-8}pb$
- Probe parameter space of MSSM
- Goal 10^{-10} pb in < 10 years
- SD limits also improving-COUPP and Kims $\sim \sigma$ SD $\sim 10^{-2} pb$ --Not yet probing the MSSM

SUSY at ILC

Search for sparticles hard to see at LHC

- Determination of parameters :
 - Masses can be measured at per-mil level : threshold scans/endpoint measurements
 - Spin of particles
 - Determination of soft SUSY parameters
 - LHC/ILC: Phases from stop production and decay (G. Moortgat-Pich)
 - Underlying model, SUSY breaking mechanism..
 - DM properties

SUSY at ILC

- Determination of parameters :
- Sneutrinos (T. Robens)
 - Mass measurement mass even when decay is invisible (e.g. SPS1A) Freytas'05 $e^+e^- \longrightarrow \tilde{\chi}_1^+\tilde{\chi}_1^- \longrightarrow (\tilde{\nu}_e\,\tilde{\nu}_\mu\,e^-\mu^+ \longrightarrow)\,\tilde{\chi}_1^0\,\tilde{\chi}_1^0\,e^-\mu^+\nu_\mu\,\bar{\nu}_e$ signal: $e^-\,\mu^+ + E_{miss}$
 - Full matrix element for both signal and background (interference effects)
 - Chargino mass from threshold scan, sneutrino mass from lepton energy spectrum $\sim 1\%$ precision
 - study is ongoing : improved cuts etc...

Precision

- To take advantage of high precision at ILC must make theoretical predictions at one-loop level
 - Many processes computed in the last few years
 - Chargino pair production with CP violation (K. Rolbiecki)
 - Asymmetries induced at one-loop only sensitive to phases, e.g. ϕ_t could be a few %

$$A_{12} = \frac{\sigma^{\text{loop}}(e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_2^-) - \sigma^{\text{loop}}(e^+e^- \to \tilde{\chi}_2^+\tilde{\chi}_1^-)}{\sigma^{\text{tree}}(e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_2^-) + \sigma^{\text{tree}}(e^+e^- \to \tilde{\chi}_2^+\tilde{\chi}_1^-)}$$

- Experimental level: studies with full simulation
 - Di-muon decay of neutralino2 (N. D'Ascenzo)
 - Smuon pair production (Chen)

Di-muon decay of neutralino 2

- Muon channel has small BR (2.5% for SPS1a) but di-muon signature is clean and easy to detect at ILC
- Signal is small, background is huge (more than 2 orders of magnitude)

- Optimisation, extended Likelihood method for enhancing signal vs background for small signals
- Full background + full simulation on the way

- Two isolated muons with : Missing energy >300 GeV
- Transversal momentum > 40 GeV
- Acoplanarity $> 0.5 \pi$

RH- Smuon pair production

- Determine mass and spin of smuon
- Full simulation
- Signal: 2 muons +missing energy
- Background small after cuts
- Masses from endpoint energy : precision <1%
- Determination of spin
- Angular distribution

$$\frac{d\sigma}{d\cos\theta} \propto \sin^2\theta$$

Shows that smuon has spin zero

$$e_L^+ e_R^- \rightarrow \tilde{\mu}_R \tilde{\mu}_R \rightarrow \mu^+ \mu^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

Calculated:
$$m_{\tilde{\mu}_R} = 142.89 \pm 0.33 \, GeV$$
 $m_{\tilde{\chi}_1^0} = 97.63 \pm 0.22 \, GeV$

Dark Matter

- Evidence for BSM physics?
- Many candidates for DM (SUSY and non-SUSY) - neutralino
- MSSM, CPVMSSM
- CMSSM, GMSB, AMSB, NUHM, VCMSSM (GUT scale conditions and symmetry breaking mechanism)
- NMSSM, nMSSM, MNSSM, CNMSSM, VCNMSSM, USSM μ problem
- SO10SSM, E6SSM...

Models can have special DM properties and face different challenges for measurement of sparticles at colliders/ILC

- MNSSM (S. Hesselbach)
 - Extra neutralino (singlino) can be light
 - Extra scalars possibly light
- USSM (J. Roberts)
 - Extra neutralinos, Z'

Dark Matter

- Evidence for BSM physics?
- Many candidates for DM (SUSY and non-SUSY) - neutralino
- MSSM, CPVMSSM
- CMSSM, GMSB, AMSB, NUHM, VCMSSM (GUT scale conditions and symmetry breaking mechanism)
- NMSSM, nMSSM, MNSSM, CNMSSM, VCNMSSM, USSM μ problem
- \$010SSM, E6SSM...

Model independent approach

Model independent WIMP search

- WIMP pair with single photon (Bartels)
- One of physics analyses of ILD detector concept –optimisation
- Could be only SUSY signal at 500GeV
- Simple and clean signature
- Estimate cross-section from Ωh^2 assuming a certain fraction of annihilation DM in e+e-pairs
- Reach in coupling+ mass determination (2007)
- Improved analysis going on

DM at colliders

- WMAP and SDSS gives precise information on the amount of dark matter
- "Doing cosmology at colliders": discovery of new particles and measurement of their properties→
 - "collider prediction" for the relic density of DM
 - Matches what has been measured in the sky/confront cosmological model
- Precision measurements at colliders are needed
- How difficult strongly depends on the details of the new physics model which SUSY scenario, what is the dominant DM annihilation process
- Studies exist for both LHC and ILC in CMSSM and MSSM bulk scenario, stau coannihilation- focus point scenario
 - Polesello, Tovey, Nojiri, Martyn, Bambade et al, Baltz et al,
 - Some scenario, with precision expected at ILC could match the precision of PLANCK

CPVMSSM and **ILC**

- New study within CPVMSSM in specific scenario with light stau $\tau_1, \tau_2, \chi_1, \chi_2, \chi^+$ accessible at ILC
- Staus are mixed and both contribute to annihilation of LSP into tau pairs
- All signals in $\tau \tau E_{miss}$ disentangle sources –
- Use measurement of masses $+\theta_{\tau} + P_{\tau}$ to determine model parameters and infer
- 0.116< $\Omega h^2 < 0.19$
- WMAP: $0.094 < \Omega h^2 < 0.136$

Need to know couplings of LSP not only masses

Conclusion

- ILC can be exploited for precise determination of parameters
 - Underlying model supersymmetry breaking mechanism
 - Dark matter properties
- Experimental studies with full simulation of signal and background are going on