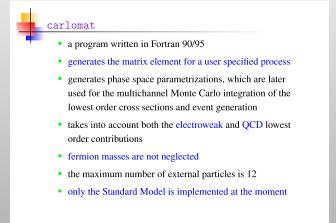


Generators & LoopVerein (w/a little NNLO top)

Thorsten Ohl

Institute for Theoretical Physics and Astrophysics, University of Würzburg

ILC/ECFA Workshop 2008 Warsaw, June 9-12, 2008

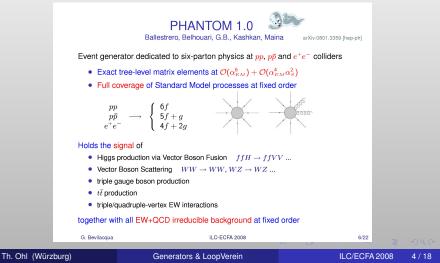

Th. Ohl (Würzburg)

Generators & LoopVerein

ILC/ECFA 2008 1 / 18

CARLOMAT, a program for automatic computation of multiparticle cross sections

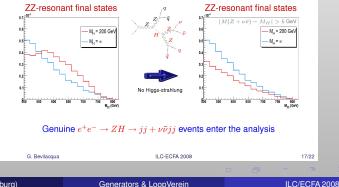
▶ Plan: provide a more efficient alternative for generating event samples for arbitrary $2 \rightarrow 8, ..., 12$ processes in the SM (incl. QCD)


 \blacktriangleright has been tested successfully against older programs for various $2 \rightarrow 6$ processes:

Final state	\sqrt{s}	carlomat	AMAGIC++	HELAC
bbuūdd	360	32.98(11)	32.90(15)	33.05(14)
	500	50.31(19)	49.74(21)	50.20(13)
$b\bar{b}u\bar{d}e^-\bar{\mathbf{v}}_e$	360	11.448(26)	11.460(36)	11.488(15)
	500	17.424(56)	17.486(66)	17.492(41)
$b\bar{b}e^+ u_e\mu^-ar{ u}_\mu$	360	3.843(5)	3.847(15)	3.848(7)
	500	5.856(11)	5.865(24)	5.868(10)
$bar{b}\mu^+ u_\mu\mu^-ar{ u}_\mu$	360	3.837(5)	3.808(16)	3.861(19)
	500	5.834(10)	5.840(30)	5.839(12)

UNIVERSITÄT

PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders


► a dedicated event generator for 2 → 6 processes (SM and QCD) at both ILC and LHC, building on the PHACT expertise at Torino:

 e.g.: testing cuts that enhance the VV scattering signal over Higgsstrahlung for EWSB studies requires inclusion of all irreducible backgrounds:

Early on-set of EWSB effects is partially masked in the ZZ channel by residual non-scattering contributions. What's going on?

ISR and beamstrahlung limit the validity of the kinematical cut $M_{recoil} > 200 \text{ GeV}$ in suppressing *Higgs-strahlung* contributions

5/18

Th. Ohl (Würzburg)

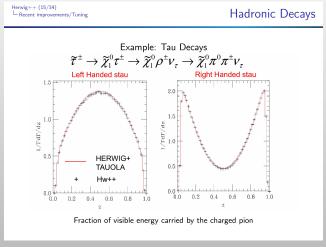
News from Herwig++

UNIVERSITÄT WÜRZBURG

Lots of activity in the last two years

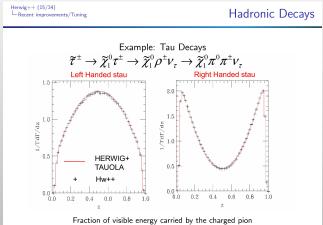
News from Herwig++

UNIVERSITÄT


- Lots of activity in the last two years
- Herwig++ "ready for prime time"
- needs to be tuned and used

4. Summary

- Herwig++ group made a lot of progress in the last year
- The generator is now fully ready for hadron collisions
- A comprehensive manual is now available
- Support of experiments: herwig@projects.hepforge.org
- Further improvements will follow. News on wiki!


Generators Andrzej Siodmok: Herwig++

e.g.: native description of τ-decays challenges TAUOLA (maybe not as flexible yet, but getting stronger):

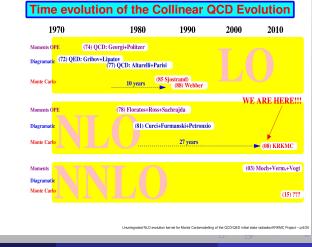
Generators Andrzej Siodmok: Herwig++

e.g.: native description of τ-decays challenges TAUOLA (maybe not as flexible yet, but getting stronger):

also: underlying event, p_T distribution, hard matrix elements, hadronic decay database, BSM, ...

Th. Ohl (Würzburg)

UNIVERSITÄT


Generators & LoopVerein

ILC/ECFA 2008 7 / 18

Generators Staszek Jadach: Unintegrated NLO evolution

Unintegrated NLO evolution kernel for Monte Carlo modelling of the QCD/QED initial state radiation

long roads from inclusive renormalization group evolution to exclusive event generation for the PDFs

Th. Ohl (Würzburg)

UNIVERSITÄT

WÜRZBUR

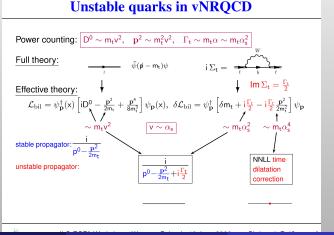
Generators & LoopVerein

operational proof of concept for NLO parton shower:

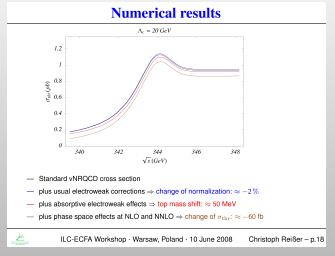
Discussion, Conclusions

- Unintegrated NLO kernel within full 2-particle LIPS in the MC can be constructed.
- Dimensional regularization can be removed.
- The integrand of the NLO kernel features nice IR cancellations, such that only short range correlation remain for large y_i and α_i. No long tails! No cancellations between distant regions in the LIPS!
- Re-insertion of the NLO unintegrated kernel into LO MC model representing LO+NLO (DGLAP) evolution done for n = 2 and is perfectly feasible for n > 2.
- Monte Carlo weight looks regular/positive.
- A decisive/critical milestone towards NLO parton shower MC has been reached.

Ununtegrated NLO evolution kernel for Monte Carlomodelling of the QCD/QED initial state radiationKRKMC Project - p.20/20


WUVERSITÄT Top / Loopverein Christoph Reißer: EFT for the tt threshold

Finite lifetime effects in top quark pair production at threshold


physics at the tt threshold is governed by different scales: energy, momentum, width (lifetime) WUVERSITÄT Top / Loopverein Christoph Reißer: EFT for the tt threshold

Finite lifetime effects in top quark pair production at threshold

- physics at the tt threshold is governed by different scales: energy, momentum, width (lifetime)
- needs effective field theory for correct power counting and running between scales

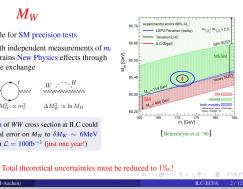
sizable NNLO effects:

Dominant NNLO corrections to W-pair production near threshold

▶ ILC with $\sqrt{s} \approx 2M_W$ will improve ΔM_W , needs reliable theoretical predictions: avoid gauge invariance issues or unitarity violations

Motivation

Process of W-pair production near threshold has phenomenological relevance for accurate determination of the W boson mass at ILC

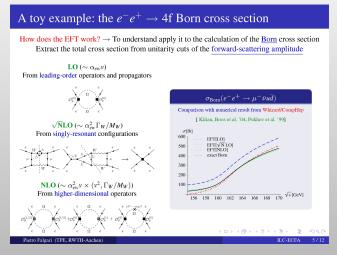

M_W

- Key observable for SM precision tests
- Combined with independent measurements of m_t and M_H constrains New Physics effects through virtual-particle exchange

Threshold scan of WW cross section at ILC could reduce the total error on M_W to $\delta M_W \sim 6 {\rm MeV}$ [wilson '01] with $\mathcal{L} = 100 \text{fb}^{-1}$ (just one year!)

Pietro Falgari (TPE, RWTH-Aachen)

Th. Ohl (Würzburg)

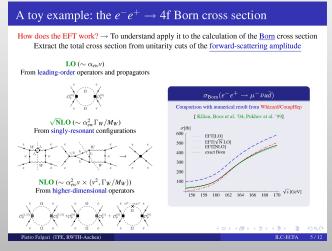

UNIVERSITÄT

IRZBUR

Generators & LoopVerein

ILC/ECFA 2008 12/18

Effective Field Theory approach (again) provides excellent approximation for inclusive cross sections



Th. Ohl (Würzburg)

UNIVERSITÄT

ILC/ECFA 2008 13 / 18

Effective Field Theory approach (again) provides excellent approximation for inclusive cross sections

cuts can be implemented as well

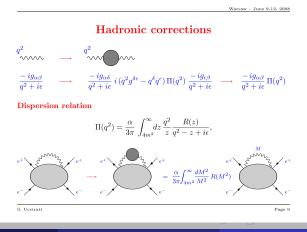
Th. Ohl (Würzburg)

UNIVERSITÄT

ILC/ECFA 2008 13 / 18

Two-loop hadronic corrections to Bhabha scattering

Bhabha-Scattering essential for luminosity monitoring: at ILC not only at small angles!

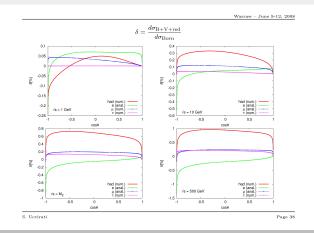

UNIVERSITÄT

WÜRZBURG

Loopverein Sandro Uccirati: Bhabha @ NNLO

Two-loop hadronic corrections to Bhabha scattering

- Bhabha-Scattering essential for luminosity monitoring: at ILC not only at small angles!
- non-perturbative hadronic contributions via disperion relation from the measured R ratio



Th. Ohl (Würzburg)

UNIVERSITÄT

ILC/ECFA 2008 14 / 18

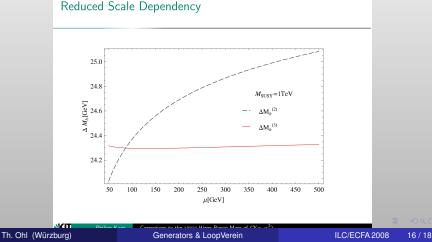
• hadronic NNLO corrections reach 1% at $\sqrt{s} = 500 \text{ GeV}$:

UNIVERSITÄT

IRZBUR

Loopverein Philipp Kant: m_H @ NNNLO

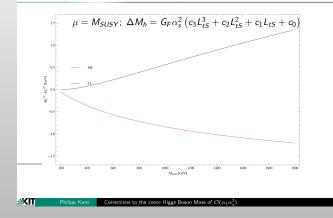
Three-Loop Corrections to the MSSM Higgs Boson Mass


 if there were no NLO corrections, LEP2 would have found the lightest MSSM Higgs

UNIVERSITÄT

WÜRZBURG

Three-Loop Corrections to the MSSM Higgs Boson Mass


- if there were no NLO corrections, LEP2 would have found the lightest MSSM Higgs
- need to estimate NNNLO corrections for reliable predictions, because NNLO still suffer from sizable scale uncertainties:

Loopverein Philipp Kant: m_H @ NNNLO

caveat emptor: leading logarithms can be misleading

Full Result vs LL Approximation

leading order parton level event generators for 6 and more final state particles continue to multiply

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived
- the next generation of general purpose event generators including the non-perturbative QCD muck (e.g. HERWIG++) has arrived

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived
- the next generation of general purpose event generators including the non-perturbative QCD muck (e.g. HERWIG++) has arrived
- NLO parton showers are on the horizon

UNIVERSITÄ'

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived
- the next generation of general purpose event generators including the non-perturbative QCD muck (e.g. HERWIG++) has arrived
- NLO parton showers are on the horizon
- the effective field theory technology for systematic threshold expansions (W⁺W⁻ and tt
) has matured

Conclusions

UNIVERSITÄ

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived
- the next generation of general purpose event generators including the non-perturbative QCD muck (e.g. HERWIG++) has arrived
- NLO parton showers are on the horizon
- the effective field theory technology for systematic threshold expansions (W⁺W⁻ and tt
) has matured
- complete NNLO 2 \rightarrow 2 cross sections are available

- leading order parton level event generators for 6 and more final state particles continue to multiply
- \blacktriangleright complete NLO parton level event generators for 2 \rightarrow 4 have arrived
- the next generation of general purpose event generators including the non-perturbative QCD muck (e.g. HERWIG++) has arrived
- NLO parton showers are on the horizon
- the effective field theory technology for systematic threshold expansions (W⁺W⁻ and tt
) has matured
- complete NNLO 2 \rightarrow 2 cross sections are available
- complete NNNLO corrections for some observables are waiting to be tested by experimental observations