EUDET HCAL Electronics Integration

Riccardo Fabbri

on behalf of the CALICE Collaboration

ECFA 2008 Warsaw, 10 June 2008

- Physics Motivation and Design Constraints
- SPIROC Chip
- HCAL Base Units
- HCAL Endcap Board
- Time Schedule
- Conclusions and Outlook

Physics Requirements and Design Constraint

Integration of Electronics into Analogue Hadronic Calorimeter (HCAL) for ILC

Thousand of channels to be handled (high-granularity calorimeter)

 \implies physics motivation: particle data flow

Non-invasive integration needed; as close as possible to active area in detector

Physics Requirements and Design Constraint

Integration of Electronics into Analogue Hadronic Calorimeter (HCAL) for ILC

Thousand of channels to be handled (high-granularity calorimeter)

 \implies physics motivation: particle data flow

Non-invasive integration needed; as close as possible to active area in detector

 \implies compact design with integrated sensors & electronics

- minimum dead areas
- minimum power consumption
- maximum compactification

- **Barrel of HCAL architecture:** scintillator-based calorimeter
 - granularity: $3x3 \text{ cm}^2$ tiles
 - SiPM readout (one per tile)

- **Barrel of HCAL architecture:** scintillator-based calorimeter
 - granularity: $3x3 \text{ cm}^2$ tiles
 - SiPM readout (one per tile)

– p.3

- **Barrel of HCAL architecture:** scintillator-based calorimeter
 - granularity: $3x3 \text{ cm}^2$ tiles
 - SiPM readout (one per tile)

- **Barrel of HCAL architecture:** scintillator-based calorimeter
 - granularity: $3x3 \text{ cm}^2$ tiles
 - SiPM readout (one per tile)

- **Barrel of HCAL architecture:** scintillator-based calorimeter
 - granularity: $3x3 \text{ cm}^2$ tiles
 - SiPM readout (one per tile)

SPIROC chip:

handles signal from 36 SiPMs

HBU (HCAL Base Unit):

hosts up to 12x12 tiles/4SPIROCs

HCAL Slab:

hosts $6~\mbox{HBUs}$ in a row

HEB (HCAL Endcap Board):

hosts *DIF CALIB POWER*

modules

EUDET HCAL Electronics Integration - p.3

Adjustable bias voltage for each SiPM

Separate channels for adjustable pre-amplification in low/high gain mode of input signal

adjustable shaping time

fast shaper for ...

...autotrigger (to eventually hold the analogue shaped signal)

plus digital stage (not shown here) to synchronise acquisition/readout with ILC timing

- Designed/developed by LAL (Paris)
- Should handle 36 input signals ($\longrightarrow 36$ SiPMs)
- Autotrigger: peak of input signal held by signal itself!
- Commissioning ongoing at DESY, with strong support from LAL and

Heidelberg collegues

Riccardo Fabbri

ECFA 2008

Tests on SPIROC at DESY

T=C*R-Sm

Tests on SPIROC at DESY

- Linearity studies in low/high gain mode
 - \implies at different shaping-time/variable capacitance

- Linearity studies in low/high gain mode
 - ⇒ at different shaping-time/variable capacitance

length board/chip noise characterization: $\approx 8 \text{ mV}$

- Linearity studies in low/high gain mode
 - \implies at different shaping-time/variable capacitance
- \blacksquare board/chip noise characterization: pprox 8 mV
- \blacksquare jitter (pprox 10ns) and time-walk (pprox 5-10ns) studies

1.5 pixel threshhold

- Linearity studies in low/high gain mode
 - \implies at different shaping-time/variable capacitance
- \blacksquare board/chip noise characterization: pprox 8 mV
- \blacksquare jitter (pprox 10ns) and time-walk (pprox 5-10ns) studies
- single-photon spectra from SiPM
- external trigger (to hold the signal)

- Linearity studies in low/high gain mode
 - \implies at different shaping-time/variable capacitance
- \blacksquare board/chip noise characterization: pprox 8 mV
- \blacksquare jitter (pprox 10 ns) and time-walk (pprox 5-10 ns) studies

- Linearity studies in low/high gain mode
 - \implies at different shaping-time/variable capacitance
- \blacksquare board/chip noise characterization: pprox 8 mV
- \blacksquare jitter (pprox 10 ns) and time-walk (pprox 5-10 ns) studies
- single-photon spectra from SiPM
- external trigger (to hold the signal)
- very first spectra in autotrigger mode with ad-hoc set-up
 - \implies early to draw quantitative conclusions!
- Improvement forseen when
- large jitter/time-walk understood
- chip digital part (for autotrigger) fixed (\longrightarrow SPIROC2) **Riccardo Fabbri ECFA 2008**

– p.7

Calibration system

Calibration system

Calibration system

Here shown is concept under

investigation at DESY

 \Longrightarrow Other option available from

Praga group (see Polak's talk)

- 1 LED per tile
- First results (few noise optimization):
 - single-photon peak spectrum visible
 - \Longrightarrow LED integration setup suitable

Calibration system

investigation at DESY

 \Longrightarrow Other option available from

Praga group (see Polak's talk)

- ${\color{red} \bullet} 1$ LED per tile
- First results (few noise optimization):
 - single-photon peak spectrum visible
 - \Longrightarrow LED integration setup suitable
 - cross-talk under investigation cross-talk $\approx 2.5\%$
 - \Longrightarrow possibly due to tile-tile coupling

Module cross-section:

Tiles (3 mm)

Absorber plates (steel)

Module cross-section:

 \implies reduction obtained using SPIROC2 (with height 1.4 mm)

(SPIROC2 here shown with 1 mm; SPIROC1 = 4.3 mm)

Module cross-section:

Module cross-section:

Module cross-section:

 \implies reduction obtained using SPIROC2 (with height 1.4 mm) (SPIROC2 here shown with 1 mm; SPIROC1 = 4.3 mm)

Power dissipation: cooling system not forseen

per channel:

— SiPM: 15μ W (always on) — SPIROC: 25μ W — calibration electronics: 23μ W

⇒ effective dissipation sizably reduced keeping SPIROC/calib. electronics off

between two ILC train crossing (on during 1% of ILC duty time)

✓ even more, considering calibrations done realistically only every few minutes

Differently from HBU case, here cooling is forseen (it is located outside detector)

Riccardo Fabbri

Time Schedule

FE AHCAL Timeline	2008								2009					
Month	Mar/Apr	May/June	July/Aug	Sept	Oct	Nov	Dec	Jan/Feb	Mar/Apr	May/June	July/Aug	Sept/Oct		
Task						Milestone				Milestone				
							I							
Scint. Tiles														
Definition of architecture				Moulded Tiles	6		Dimensions							
Production									f.					
SPIROC		SPIROC2		SPIROC3			Pinout							
Hcal Base Unit (HBU)							1							
Circuit Design/Layout									1	Ì				
PCB Production/Assembly														
Detector Interface (DIF)														
Common Block Firmware										ĺ	*****			
AHCAL Block Firmware											*****			
Circuit Design/Layout										i				
PCB Production/Assembly														
CALIB. POWER														
Circuit Design/Layout			2						,	Ì				
PCB Production/Assembly														
Svstem Tests											*****			
DAQ Software, LDA			2											
Component Ordering						*****								
Prototype														
EUDET Mod. (Final)	28.05.08													

Riccardo Fabbri

Time Schedule

FE AHCAL Timeline	2008								2009					
Month	Mar/Apr	May/June	July/Aug	Sept	Oct	Nov	Dec	Jan/Feb	Mar/Apr	May/June	July/Aug	Sept/Oct		
Task						Milestone				Milestone				
Scint. Tiles														
Definition of architecture				Moulded Tiles	5		Dimensions							
Production														
SPIROC		SPIROC2		SPIROC3			Pinout							
Hcal Base Unit (HBU)														
Circuit Design/Layout														
PCB Production/Assembly														
Ci PCB P	moo	dules				, -	,	,-						
CALIB, POWER							!			P1141000000000000				
Circuit Design/Layout														
PCB Production/Assembly														
System Tests														
DAQ Software, LDA			Market and M											
Component Ordering		, , , , , , , , , , , , , , , , , , , ,												
Prototype	·													
EUDET Mod. (Final)	28.05.08		1. 1.											

Riccardo Fabbri

Summary and Outlook

- SPIROC (to readout) commissioning on going
 - \implies DESY+Heidelberg+LAL sinergy
 - \implies SPIROC2 design done; chip expected for end 2008
- Elecronic unit HBU design in advanced stage
 - \implies module size driven by SPIROC height (reduced with SPIROC2)
 - \implies power dissipation optimized
 - switching off SPIROC/calibration electronics when not needed

Summary and Outlook

- SPIROC (to readout) commissioning on going
 - \implies DESY+Heidelberg+LAL sinergy
 - \implies SPIROC2 design done; chip expected for end 2008
- Elecronic unit HBU design in advanced stage
 - \implies module size driven by SPIROC height (reduced with SPIROC2)
 - \implies power dissipation optimized
 - switching off SPIROC/calibration electronics when not needed
- Time schedule for design and production of component prototypes ready
 - \implies first version of all components expected by end of 2008
 - \implies final version of system expected within 2009

SiPM/Scintillator Characteristics

SiPM: novel multi-pixel photo-multiplier operated in Geiger mode $\implies B$ -field proof, small

Optimization of scintillator size to 3x3 cm²

 \implies confirmed by Monte Carlo simulation

Wavelength shifter

SiPM: Single-peak spectrum with External Trigger

- SiPM Nr. 753
- \blacksquare SPIROC operated in HG mode with 100 fF variable capacitance and
 - 25ns shaping time
- external hold (from pulse generator)

SPIROC: Noise Measurements

Noise measured for all 36 input channels, separately, by counting the trigger efficiency while decreasing the voltage reference at the discriminator in SPIROC

HBU-HBU Interconnection

Flexlead:

- rigid at connector (80 pins) sides
- flexible in between HBUs
- bended flexlead allows HBU-HBU displacement of $\pm 100 \mu$ m