

## **LCFI** Detector Overview



Jaap Velthuis University of Bristol On behalf of the Linear Collider Flavour Identification (LCFI) Collaboration ♦ Status of CCDs - New generation of Column parallel CCDs (CPC2) - New result readout chip (CPC2) New results of mechanics Status of ISIS - Beam test results standard ISIS1 ♦ Summary ♦ Future plans



# LCFI Second Generation CPCCD : CPC2



- ♦ CPC2 wafer (100  $\Omega$ .cm/25  $\mu$ m epi and 1.5k $\Omega$ .cm/50  $\mu$ m epi)
- Low speed (single level metallisation) and high speed versions
- High speed (busline-free) devices with 2-level metal clock distribution:
  - The whole image area serves as a distributed busline
  - Designed to reach 50 MHz operation (needed to keep the occupancy < 1% in L1)





### CPC2 – High Speed in Stand-alone Mode



- First tests with a PCB transformer and a RF amplifier for clocking
- Busline-free CPC2-10 working at 45 MHz, important milestone
- Numerous parasitics diminish overall performance, high noise from the RF amplifier
- CMOS driver chip used as well





# CPC2-10 BLF with CPD1 Clocking University of BRISTOL

- ◊ <sup>55</sup>Fe signal (1620 electrons, MIP-like)
- CPD1 producing 20 A clocks in the range 3.3 V to 1.2 V
- Tests are continuing pushing up frequency, using 50 mm long sensor
- Main limitation for high frequency: ground bounce coursed by clock





## CPR2: Analogue Performance



LCFI

♦ Bump-bonded CPC2/CPR2 driven by two CPD1 chips Noise ground 60 e ♦ Works up to 9 MHz



- Improvements implemented in CPR2A:
  - Cluster size reduced to  $4\times 6$
  - 3-fold increase in the column memory buffer (can store up to 3 clusters) to reduce dead time and a new state machine
  - Individual column threshold corrects for gain variations
  - Analogue calibration circuit the chip can be partially tested without bump bonding to a CCD
  - Improvements to the analogue circuitry: gain matching, reduced differential non-linearity in the ADC, new clock distribution
  - Digital crosstalk to the charge amplifiers will be minimized
  - Code-dependent current in the ADC will be reduced
- ◇ CPR2A received in May, tests started



ó ź

4 6

8

ADC code

31

10 12 14 16 18 20 22 24 26 28

Jaap Velthuis, University







- Two-fold goal : lower V and lower C
- Two designs based on CPC2 to study very low inter-gate barriers and clock amplitudes
- Six designs for reduction of the inter-gate capacitance:
  - Pedestal CCD (on 20 μm and 24 μm pitch)
  - Shaped Channel CCD (variant of the Pedestal CCD), on 20 μm and 24 μm pitch
  - Open Phase CCD
  - "Inter-channel gap" CCD
- Pedestal designs could reduce C<sub>ig</sub> by a factor of 2-4, open phase by ≈2





- ♦ 6 CPC-T wafers delivered, one of each type
- One type (stepped nitride barrier) failed the complete wafer
- Tests started at RAL and Oxford the chip works!
- First results at 50 MHz with 4-phase CPCCD, studies of minimal voltages



## Mechanical Studies



- To make stiff light weight structures are studying SiC foams
  - CCDs need significant cooling
  - 25 micron silicon on 1.5mm 8% SiC
    - Very rigid
  - Achieved 0.14% X<sub>0</sub>



- 20 micron silicon sandwiching 1.5mm 2% carbon
- Could be double-sided
- Achieved 0.07% X<sub>0</sub>





## Mechanical Studies



- SiC Foam substrate ladder cooled
- Negligible thermal distortion over 70°C





## Status of ISIS



In-Situ Image Sensor
 Beam test of ISIS1

 Noise & Signals
 Tracks

 Position resolution
 Efficiency

## 

## In-Situ Image Sensor



- ♦ Operational Principles:
  - Every pixel has mini CCD to store charge: burst camera with multiframes
  - Charge collected at photogate
  - Transferred to storage pixel during bunch train
  - 20 transfers per 1ms bunch train
  - Readout during 200ms quiet period after bunch train



## ISIS properties and status





LCFI

#### ♦ ISIS advantages

- Low frequency clock -> easy to drive
- 20 kHz during capture, 1MHz readout
- ~100 times more radiation hard than CCDs (fewer charge transfers)
- Conversion to voltage and readout in the 200 ms-long quiet period after the train, RF pickup is avoided
- ISIS combines CCDs, active pixel transistors and edge electronics in one device
- "Proof of principle" device (ISIS1) designed and manufactured by e2V Technologies
  - ISIS2 submitted 2 weeks ago



### 15151



- 16×16 array of ISIS1 cells with 5-pixel buried channel CCD storage register each
- Cell pitch 40 μm × 160 μm, no edge logic (pure CCD process)
- ♦ Total active area 0.56×2.24mm<sup>2</sup>





ISIST(II)



 ISIS1 comes in two versions. Standard and pwell. P-well ISIS has entire buried channel in p+-well. All results here on std ISIS1





## ISIS1 works!



 ♦ Here S/N all pixels all events, pedestal corrected,
 ♦ spectrum Fe<sup>55</sup>





## ISIS1 with p-well



- High p-well doping protect  $\diamond$ storage register
- Look at ratio R of charge  $\diamond$ collected at photogate to charge collected at storage pixel
- If increase clock voltage, get  $\diamondsuit$ punchthrough under in-pixel CCD, R drops
- CCD, R drops Lower p-well doping, charge reflection decreases No p-well, R ~ 7 dependent on gate geometry Lower p-well doping, charge  $\diamond$ reflection decreases
- No p-well, R ~ 7  $\diamond$ 
  - and voltages
- All results after using standard  $\diamondsuit$ ISIS1 without p+-well



K.Stefanov G.Zhang, RAL



## Beam test



Seam test October-November 2007 ◇ DESY 1...6 GeV e<sup>-</sup> Self contained ISIS telescope -5 ISIS in a row ◇ Readout speed 2.5 MHz -for ILC need only 1 MHz Jaap Velthuis, University of Bristol

## Beam test preparations



◇ 16×16 pixels each 40×160µm<sup>2</sup>

CFI

- ◇ Total active area 0.56×2.24mm<sup>2</sup>
- Needed precision mounting





## Pedestals and Noise



- For analysis each memory cell separate pixel i.e. 16x(16x5)
- Calculate average offset for each pixel
  - Reiterate to remove hits
- Random noise calculated as std dev after pedestal removal
- No common mode found





#### ♦ Cluster cut

- $-5\sigma$  seed,  $2\sigma$  next cut
- ♦ Clusters small
  - Pitch 160  $\mu m$  in X
  - Little charge sharing in X
  - η in Y demonstrates charge sharing
- ♦ S/N=37.3±0.2
  - Homogeneous memory cells
  - Lower peak due to local inefficient charge collection. Will come back later.

## Signals











#### Tracks result in correlations between hits in different ISIS sensors





## Position resolution



- Vsing ISIS 0,1 and 3 to predict ISIS 2
- $\circ \sigma_n = 10.8 \pm 0.3 \ \mu m$ 
  - Homogeneous over memory cells
  - Includes tracking and multiple scattering error (large!: 4 devices 600µm thick, 6 GeV e-)
- Doesn't work X:
  - Pixels too large
  - Same in Y, but less pronounced





## Efficiency



- ♦ Efficiency measurement:
  - Take events with just 1 hit in telescope planes.
  - Fit track
  - Check whether hit found in DUT at correct place
- Efficiency very low, but no surprise.
  - Pitch very large  $160 \times 40 \mu m^2$
  - Relying on diffusion
- Not enough charge arriving, hence might miss hits too far away photo gate





## Efficiency (II)



- The problem occurs due to the very asymmetric pitch and large pitch.
- Hit occurring worst position, difference in distance to the photo gates small.
- From the geometry, need S/N of ~55 for 100% efficiency



| Pixel type | distance $(\mu m)$ |
|------------|--------------------|
| 1          | 82.5               |
| 2          | 100                |
| 3          | 128.1              |
| 4          | 161.2              |
| 5          | 197.0              |
| 6          | 234.1              |



## Simple toy MC



- ♦ Generate signals MPV 4000e-(50µm epi-layer)
- Location randomly over pixel
- Spread signal 5x5 area
- Standard analysis (5σ seed and 2σ next)
- Vary noise
- ♦ Can get double peak





## Simple toy MC



- Implementing some trapping proportional to distance yields even clearer double peaks
- Qualitatively understand ISIS1 result and are happy:
  - ISIS concept works
  - S/N not too bad
  - Just pitch too large, hence poor efficiency









- Jazz Semiconductor will manufacture ISIS2
  - Process: 0.18 µm with dual gate oxide
  - Area 1 cm<sup>2</sup> (four 5x5 mm<sup>2</sup> tiles)
  - 32x128 pixels (x2 designs)
- Developed buried channel and deep p+ implant
  - Buried channel is necessary for CCD
  - Deep p+ is beneficial to decouple buried channel from p-well, no need for punchthrough, was absent in ISIS1









- ♦ Pixels 80 x 10  $\mu$ m<sup>2</sup>
- ♦ Buried channel 5  $\mu$ m wide
- ♦ 20 memory cells
- ♦ 3 metal layers
- CCD gates: doped polysilicon
- Staggered pixel layout, max distance to electrode 21 μm
- Submitted end of Mai.
  Receive in October 2008



## Summary



- Making a lot of progress on CCD development
  - Successfully operated a busline-free CPC2-10 at 45 MHz using a PCB transformer and a RF amplifier for clocking. Noise better than 150e- at 30MHz.
  - New readout chip CPR2A
    - Received in May. First tests (Charge injection in ADC) seems fine.
  - Improving CCD layout to reach lower V and lower C.
    Testing 6 new designs, tests just started, but chips work.
- On mechanics side, SiC foam ladders perform very well. Stay well in shape over large temperature range



## Summary (II)



- Performed successful ISIS1 beam test
- Demonstrated that ISIS concept works well as a sensor
- ♦ Main results:
  - $S/N=37.3\pm0.2$  (for hits around photogate)
    - ♦ Can still improve S/N in current setup
    - ♦ Thinning to ILC thickness does not affect S/N
  - $-\sigma = 10.8 \pm 0.4 \ \mu m$ 
    - $\diamond$  S/N and  $\sigma$  homogeneous over memory cells
  - Efficiency 66% (not so nice, but due to pitch)
    - Should be much better in newer ISIS design ISIS2



## Future plans



- Continue to test new CCD structures. Try to improve the noise.
- ◇ Further test new readout chip.
- Further develop SiC-foam ladders.
- For ISIS(1):
  - Build DAO system with laser and X,Y motor stage to study local charge loss.
  - Planned ISIS1 beam test in August 2008 at CERN using EVDET telescope
    - ♦ more precise tracking
    - Measure signal and efficiency as function in-pixel position
  - Need to test and compare p-type ISIS1
  - Eagerly awaiting ISIS2