Optimization of SiD

Andrei Nomerotski, University of Oxford ECFA2008, Warsaw, 11 June 2008

Physics at ILC

- Emphasis on precision of measurements
- Studies of
 - Higgs properties
 - Model independent
 - Self-coupling
 - Unique for ILC
 - SUSY parameters

But many other things are interesting and important

From Physics Studies to Optimization to Benchmarking

- Emphasis of physics studies shifted towards
 - Realities required by engineering: material (amount and distribution)
 - Realities required by reconstruction algorithms: tracking & PFA
 - Evaluation and comparison of detector choices
- Entered the phase of optimization and benchmarking
- Answer questions:
 - With added realism will it still deliver physics ?
 - How it compares to other concepts ?

Optimization & Benchmarking

- Ideally: simulate many detectors and optimize with full analyses
 - huge amount of work and data generation, not everything is available immediately
- SiD is doing step by step optimization
 - Global optimization of geometry and mag. field
 - Then subsystem optimization
 - Then benchmarking

Compulsory LOI Benchmarking List

At a Dec 7 meeting between Sakue Yamada and representatives of SiD, ILD, 4th Concept, an agreed that the following reactions will be used for LOI Physics Benchmarking:

1.
$$e^+e^- \rightarrow Zh, \rightarrow \ell^+\ell^-X, l = e, \mu; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$$

2. $e^+e^- \rightarrow Zh, Z \rightarrow q\bar{q}, \nu\bar{\nu}; h \rightarrow c\bar{c}, \mu^+\mu^-; m_h = 120 \text{ GeV at } \sqrt{s} = 0.25 \text{ TeV}$

3. $e^+e^- \rightarrow \tau^+\tau^-$, at $\sqrt{s}=0.5 \text{ TeV}$

4. $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s}=0.5$ TeV

5. $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 / ZZ \tilde{\chi}_1^0 \tilde{\chi}_1^0$ at $\sqrt{s}=0.5 \text{ TeV}$

- Proposed by WWS Software panel in consultation with the detector concepts and the WWS Roadmap Panel
- Based on the Benchmark Panel Report (Snowmass 2005)
- Had iterations to define observables more precisely
- Concept are free to add more processes which emphasize their strong sides

Benchmarking Processes

- Compulsory and additional processes will allow to benchmark subsystems
 - Vertexing
 - Tracking
 - EM and HAD Calorimetry
 - Muon system
 - Forward system
- To demonstrate strong sides of SiD
- and to compare SiD to other concepts

Metrics for Optimization

- Ultimate metric sensitivity to physics
 - GEANT & Full reconstruction
- There are simpler ways to decrease vast parameter space
 - Studies of physics with Fast MC
 - Object level optimization
 - Jet energy resolution, di-jet mass resolution, tracking/vertexing resolutions
- Cost as a metric
 - A lot can be learnt with a simple model
- Optimization of calorimeter and magnet is critical since it involves main global parameters

SiD Detector

- Main parameters of SiD
 - VD : 1.4 18 cm
 - Tracker : 18 125 cm
 - ECAL : 125 138 cm
 - HCAL : 138 250 cm
 - Solenoid : 250 333 cm
 - Muon : 333 645 cm
 - Magnetic field 5 T
 - ECAL 30 W/Si layers
 - HCAL 34 Fe layers

- 5 layer VD (barrel + endcaps)

Optimization of SiD

Philosophy:

- Find an AFFORDABLE TECHNICAL solution, which also delivers the required physics performance
- Need a performance vs cost curve
 - SiD has a simple parametric model of cost (by Marti Breidenbach)
 - Detector is described by volumes
 - Assumes how cost of various things depends on their size and materials used

SiD Cost Model

- Cost drivers: Magnet, EMCAL (W/Si), HCAL (Fe/RPC)
- Assume Mark Thomson's ILD parameterization of ∆E_{jet}/E_{jet}:

$$\alpha = 0.42 \left(\frac{B}{4}\right)^{-0.31} \left(\frac{R}{1.78}\right)^{-0.61} (1+21.6e^{-\frac{N}{7.14}})^{-0.61} (1+21.6e$$

- Convert to cost
- Study dependence on various parameters

SiD Cost Model

- M&S cost only (no labour, escalations etc)
- Many other caveats
 - Some things (like material costs) are not well
 - --- predictable

SiD Cost Model

- Vary two parameters keeping jet energy resolution constant – the curve has a minimum
- SiD "Baseline" is optimal for this value of ΔE/E(180 GeV)
 - $R_{trk} = 1.25 m$
 - B = 5 T
 - HCAL λ = 4.5
 - $-\Delta E/E(180 \text{ GeV}) = 3.8\%$

SiD Optimization: Step 1

- Assuming Mark Thomson's ILD Parameterization of $\Delta E_{jet}/E_{jet}$ and using Marty Breidenbach's Cost Model, find R, B, and λ which minimize cost for a given $\Delta E_{jet}/E_{jet}$
- This is a sequence of optimized SiDs
- Optimization is done using objects (jets), not physics

Step 2: Folding in Physics

- Use Tim Barklow's study of ZHH, which gives $\Delta g/g \ vs \ \Delta E_{jet}/E_{jet}$
- This is one of many possibilities

Refining Optimization

- Used PandoraPFA (M.Thomson) configured for SiD-like parameters
 - More sensitive to variation of parameters than current SiD PFA
 - See M.Stanitzki's talk
- EMCAL, HCAL and magnet are three most expensive items that define geometry

Assumed that tracking doesn't matter

• Optimize this looking at how jet energy resolution depends on most important parameters

Optimization of Global Parameters

Physics as Metrics

- Need to look at physics gains, not just at jet energy resolution
- Study by Tim Barklow
 - Di-jet mass resolution in various situations
 - Chargino mass measurement
 - Higgs mass measurement
 - Higgs self-coupling

Fast MC

- Used fast MC tuned to
 reproduce Pandora PFA
- SiD fast MC
 - Smear energies using different resolutions for photons and other particles
 - Cluster smeared particles to jets
 - Checked several parameterizations

Di-jet Mass Resolution

70

65

100

200

300

 $E_{W,Z}$ (GeV)

400

500

- First approxima
- How important a ulletjet mass and an terms? Calculat errors

Provimation:

$$M \approx 2E_{1}E_{2}(1-\cos\theta)$$

$$\frac{\Delta M}{M} \approx \frac{1}{2} \left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}} \right]$$

$$\frac{\Delta M}{M} \approx \frac{1}{2} \left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}} \right]$$

$$M_{Z} \approx \frac{1}{2} \left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}} \right] M_{Z}$$

$$M_{W,Z}$$

$$M_{W,Z$$

 Not important for boosted standalone W and Z

Di-jet Mass Resolution

- Studied 4-jet WZ configurations, effects of jet finding, gluon radiation and V0 reconstruction
- Dominated by PFA energy resolution, jet mass & angle terms are small
- "Physics" effects (jet finding, gluon radiation) are important but could be improved

Table of W,Z Mass Resolution Effects

All units GeV

Source of	$E_{w} = 150$	$E_{z} = 150$	$E_{w} = 250$	$E_{z} = 250$
Error	ΔM_{W}	$\Delta M_{\rm Z}$	ΔM_{W}	$\Delta M_{\rm Z}$
PFA Jet Energy	2.8	3.1	2.8	3.1
Jet Angle/Mass	< 0.5	< 0.5	< 0.5	< 0.5
Jet Finding, $\theta_{\rm WZ} = \pi$	2.2	1.7	2.0	2.5
Jet Finding, $\theta_{WZ} = 0$	3.1	1.9	3.1	1.5
Gluon Rad.	9.2	9.5	7.2	8.6
Intrincic Width	2.1	2.5	2.1	2.5
Intrinsic width	2.1	2.5	2.1	2.5
No V0 Finding	1.2	1.1	2.8	3.5

Folding in Physics

 Studied several physics processes to determine sensitivity to jet energy resolution

Chargino Pair Production $M_{\tilde{\chi}_1^+} = 198.4 \text{ GeV}$

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 qqqq$

 $M_{\tilde{\chi}^+_1} = 200.4 \text{ GeV}$

- Process 5 of compulsory benchmarking list
- Width of E_W distribution is sensitive to chargino mass

Chargino Pair Production

Higgs Self Coupling

Using Physics as Metric

 So far : looked how physics sensitivity is affected by jet energy resolution

Still fast MC but checked for several different tunes

- Bottom line : jet resolution is important and for some processes more important than for others
 - Chargino mass precision (Process 5) looks like a particularly good benchmark
- Next step : fold in cost estimate

Resolution in VD

- Parametric study of resolution in barrel and forward vertex detector
- A forward track always has the first hit in the barrel so the precision of next hits doesn't matter much
- Optimization will come from pattern recognition issues

From Optimization To Benchmarking

Standard Model Samples

- All concepts agreed to use the same MC samples for benchmarking
 - Provided in .stdhep format
- Generation of SM ^(a)/_(b) ^{10³}
 backgrounds is cumbersome
 - Many processes
 - Range of cross sections
 - Events are weighted
- Full 2ab⁻¹ 500 GeV SM sample available via ftp from o SLAC.
 - Need to add 250 GeV sample

Whizard SM Sample

- WHIZARD Monte Carlo used to generate all 0,2,4,6-fermion and t quark dominated 8-fermion processes.
- 100% e⁻ and e⁺ polarization used in generation. Arbitrary electron, positron polarization simulated by properly combining data sets.
- Fully fragmented MC data sets are produced. PYTHIA is used for final state QED & QCD parton showering, fragmentation, particle decay
 - TAUOLA for tau decays
- Remove 120 GeV Higgs from fermion final states at 500 GeV, and add explicit ffH, ffHH, etc. final states
 - Adds flexibility to vary Higgs mass without redoing the whole dataset
- Additional backgrounds
 - GuineaPig: e⁺e⁻ pairs and photons
 - Muons and other backgrounds from upstream collimators & converted to stdhep
 - $\gamma\gamma$ hadrons generated as part of the "2ab⁻¹ SM sample"

Polarization in SM Sample

 Each file corresponds to a particular initial e⁻/e⁺ polarization and final state

ftp://ftp-lcd.slac.stanford.edu/ilc/whizdata/ILC500/

Have to mix polarizations by hand

 500 fb⁻¹ sample of these events generated with 80% e⁻, 30% e⁺ polarizations, randomly mixed events from all processes

– <u>ftp://ftp-lcd.slac.stanford.edu/ilc/ILC500/StandardModel/</u>

• See Norman Graf's talk for more details

SiD Analysis Model

- Use FastMC to develop analysis algorithms
 - Input is final signal and SM samples in .stdhep format
- Use full MC (SLIC) and Perfect PFA as intermediate step to develop a realistic analysis
 - Accounts for material effects in VD and Silicon Tracker
 - Much more sophisticated than fast MC, has more tails in resolutions
- Use final tracking and PFA for the analysis when ready
 - A drop-in replacement of algorithms

Tools for Benchmarking

Java based org.lcsim framework

- org.lcsim FastMC
 - Smeared MC information
- org.lcsim full MC: SLIC
 - GEANT4 based
- Perfect PFA
 - by Ron Cassell
- Vertexing / Flavour tagging : LCFI package
 - See talk by Roberval Walsh
- Track reconstruction and Full PFA
 - See talks by Marcel Demarteau, Norman Graf and Marcel Stanitzki for status

Perfect PFA

- Tracking
 - Define "trackable" charged particles
 - Smear as in FastMC
 - Full material effects (interactions and decays) before the calorimeter are taken into account
- Neutrals
 - For all "non-trackable" particles, assign energy deposits in the calorimeters
 - Do neutral particle reconstruction using those deposits with perfect pattern recognition (no confusion term)
 - Use actual detector responses for energy and direction
 - so most of the nasty nonlinear, non-gaussian effects are included

Flavour Tagging

• See considerable improvement, especially in charm ID, in ZHH analysis (T.Barklow) after switched to LCFI package

Status of Benchmarking

- A number of analyses done previously used fast MC
 - ZH, ZHH, H \rightarrow µµ, ttbar, chargino pairs ...
 - ZH done for full MC
- Recent developments with tools
 - Switched to LCFI package for org.lcsim samples
 - Used Perfect PFA for ZHH analysis
- Started to work on analysis algorithms for Processes 1,2,4,5 from the compulsory list
- Pursue several other processes which are important for SiD
 - ZHH, anomalies in HF di-jets, cosmology motivated sbottom, top anomalous couplings, precise $ee \rightarrow \mu\mu$, $H \rightarrow \gamma\gamma$ (ECAL MAPS)

$H \rightarrow \mu \mu$ (Process 1)

- One of important Higgs Br
- $M_{\mu\mu}$ distributions for NN>0.95 for signal and background summed

$H \rightarrow \mu \mu$

• Fast MC analysis maps Higgs mass resolution as function of momentum resolution (Haijun Yang)

ZH→ccvv, ccqq (Process 2)

Top Pair Production (Process 4)

- Challenge: 6-jet final state
- Studied jet finding and btagging in dense environment (E.Devetak)
- First attempts to reconstruct top mass – work in progress
- Improving quark charge algorithms for asymmetry measurements
 - Top anomalous couplings

Double Higgstrahlung: $e^+e^- \rightarrow H^0H^0Z^0$

- Higgs potential can be derived independently from $M_{\rm H}$ and from $g_{\rm HHH}$ and compared
- Four b-jets in the final state \rightarrow b-tagging is very important
- Using Perfect PFA to develop algorithms (T.Lastovicka, Y.Li)

ZHH

- Invariant masses: clear H and Z peaks
 - Jets ranked in b-tagging NN output
 - Will be used in selections

Cosmology Motivated SUSY Scenarios

- In SUSY : DM is neutralino, coannihilation with other SUSY particles regulate how much DM is left after Big Bang
 - Need small mass splitting
- Small mass split between LSP and NLSP = small visible energy in the detector
 - $ee \rightarrow$ stops, sbottoms, staus
 - Important case to motivate the massless Tracker with zero P_T cutoff
- Large two –photon backgrounds

$$\widetilde{\chi}^{0} \underbrace{\widetilde{b}}_{\overline{b}} \underbrace{\widetilde{b}}_{Z, \gamma}^{b} \\
\widetilde{\chi}^{0} \underbrace{\widetilde{\chi}^{0}}_{\overline{t}} \underbrace{\widetilde{t}}_{W}^{t}$$

Sbottom Pair Production

- Two photon bb production is the main bkg
 - Analysis by T.Lastovicka, G.Medin, A.Belyaev
- Developing selections, evaluating b-tagging for small jet energy
- Signal and bkg before and after cuts

Countdown for Lol

- April 2009 : submit Lol
- February 2009 : results available
- October 2008 : all MC samples available
 SM sample is most CPU intensive
- September 2008 : start production

Reconstruction ready

 September 2008 : all analyses developed on fast MC and PPFA, generator level samples ready

Summary

- SiD will be optimized in steps
 - Global parameters, driven by magnet and calorimeters
 - Then all subsystems
 - Then benchmarking
- Developed a cost model which can be referenced to physics performance
- Full simulation and reconstruction tools had good progress in the last months
- Benchmarking effort has taken off
- SiD is on track to Lol