Optimization Studies for the 4th Concept Detector

Corrado Gatto INFN Lecce On behalf of Software Groups

INFN+BINP

V. Di Benedetto F. Ignatov A Mazzacane M. Rucco G. Tassielli G. Terracciano

and Fermilab

L. Garren H. Wenzel

Outline

- Status of the studies
- DCH performance with recent optimizations
- Comparison with a Si based central tracker
- Calorimeter performance and optimization
 VTX related issues
 Plans for the future

Status of Current Performance Studies

- Use delayed LoI to consolidate simulation and upgrade packages
- Faster geometries for background studies
- Start comparing detector performance with and without beam background
- Use full digitization or fast recpoints depending on the study
- Compare Fluka with Geant for tracking

Detectors in ILCroot

- VTX Detectors: 4th Concept/SiD, FTD
- Central Trackers: TPC, Drift Chamber (3 versions), Si-Tracker
- HCAL: DREAM (3 versions)
- ECAL: 4th Concept (2 versions)
- Muon Spectrometer: 4th Concept
- Total: 8 subdetectors (13 versions), most of them with full simulation

Simulation (Full Digitization)

Simulation (Fast Digit)

 Hits: produced by MC (G3,G4,Fluka)

- FastRecpoints: gaussian smearing
- Calibration (Dual Readout Calorimeter)
- Pattern recognition

Optimizing the Central Tracker

- Spherical endplates
- New geometry (cylindrical vs planar, hex cell)
- New recontruction (pattern recognition + Kalman Filter)
- Use Fluka in simulation of hits (important for jet studies)
- DCH vs Si based tracker
- Optimization with 10 muons, ttbar->6jets, GuineaPig events

New DCH Layout

- Vessel: 23-150 cm with spherical Endcaps
- Active volume: 23-147 cm
- Individual wires simulated
 - 60000 20 μm W sense wires
 - 120.000 80 μm Al field wires
- Gas: 90% He + 10% iC4H10
- Layers: 133
- Cells size and shape:
 - 6-7 mm x 6-7 mm axial exagonal for reconstruction studies
 - Exagonal all-stereo superlayers, r-dependent size, for occupancy studies

Material Budget

- Gas [He-C4H10/90-10]: 0.15%
- Wires: 0.4%
- Vessel:
 - Inner wall: 0.1% X/Xo
 - Outer wall: 2% X/Xo
 - Endcaps (wires, pads, electronics & services included): 8% X/Xo

See F. Grancagnolo talk for PET wires and Boron fiber endplates

ttbar->6 jets event in 5 T field

10 muons

DCH Resolution vs P

10 muons

DCH Resolution vs θ

Si-Tracker Layout

Version SiD01-Polyhedra + SiD01

0.07

5

- Guard ring: mm
- Barrel Layers:
- Total Tiles Barrel 7312
- Wafer layout
- Strip pitch 50 µm
- Strip thickness (Si wafer) 300 µm
- Strip length 93.31 mm
- Tile width 93.531 mm ۲
- Carbonfiber in 0.228 mm
- 3.175 mm Rohacell tickness
- Carbonfiber out 0.228 mm
- Si support 300 µm x 6.667 mm x 63.8 mm
- Kapton Layer 0.1 mm
- Support layout
- Carbon Fiber
- Rohacell 8.075 mm
 - Carbon Fiber

Barrel Layer layout •

Radial position (Barrel) cm 18.5-24.5; 44.1-50.1; 69.6-75.6; 95.2-101.2; 120.8-126.5

500 µm

500 µm

Z-length cm 53.4; 121.6; 189.6; 257.8; 326

Endcap rmin rmax z position in cm 1 18.5 48.6 62.9148

- 18.5 74.1 96.915515
- 99.7 131.016285 18.5
- 19.5125.3 165.117005
- 2.7816.67 20.59408 16.67 54.04408
- 6 7.51
- 11.65 16.67 83.14408 7

Barrel has single sensor strips

Endaps have double sensor strips with 17.5 mrad stereo angle

Material Budget at θ = 90° (θ = 0° for endcaps/endplates)

• Beam Pipe: 0.18% X/X_o

• VXD:

Detector & support: 0.8%
 X/X_o

Si Tracker

- Barrel :6.21% (Si= 3.98% + Support=2.23%)
- Endcap Inner Disks: 2.93 % X/Xo
- Endcap Outer Disks: 4.39-5.39% (with supports) X/Xo

Drift Chamber

- Gas [He-C4H10/90-10]: 0.15%
- Wires: 0.4%
- Vessel:
 - Inner wall: 0.1% X/Xo
 - Outer wall: 2% X/Xo
 - Endcaps (wires, pads, electronics & services included): 8% X/Xo

Simulation and Reconstruction Issues

- All studies performed with ILCroot
- None of the layout have been fully optimized yet
 - CluCou DCH has cylindrical axial layers
 - DCH is designed for 3.5T field (studies are made at 5T)
 - New reconstruction still has left/right ambiguity (0.5% of tracks)
 - SiT has not segmented endcaps yet
 - SiT 25 mm pitch strips by default with readout every other strip
- Pattern recognition and Kalman Filter optimized for efficiency
- All resolution studies by F. Ignatov

June 11th, 2008

ILC ECFA2008 - C. Gatto

SiT Event Display in ILCroot

ttbar->6jets event (5 Tesla)

June 11th, 2008

Tracking Efficiency vs θ

Seeding is done in DCH
VTX points are added during Prolongation in Kalman Filter

- Seeding is done in VTX
- SiT points are added during Prolongation in Kalman Filter

10 muons

 $\varepsilon = \frac{reconstructed \ tracks}{good \ tracks}$

10 muons

Resolution vs Momuentum

Resolution vs θ

Relative Pt resolution with Theta

10 muons

e⁺e⁻ -> t<u>t</u> -> 6 jets with DCH E_{CM}=500 GeV

• Average number of hits per cell vs layer

• Occupancy vs layer

Gatto

ttbar->6jets

Momentum Resolution

ttbar->6jets

ttbar->6jets

Pattern Recognition Performance

The Fake Clusters Problem

- to accept a new recpoint in Kalman track we require $\chi^2 < 16$
- for correct assignment this translate into a minimum distance between clusters greater than 4 sigmas of resolution.

DCH vs Silicon Central Tracker

DCH

Pro

- Integrates 1 BX
- Capable of track finding
- Low requirement on VTX
- Low material budget

Con

- Lower performance in fwd direction
- Large occupancy in innermost layers
- Large material budget in endplates

SiT

Con

- Integrates several BX
- Need VTX to find tracks
- VTX must integrate few BX
- Medium material budget

Pro

- Higher performance in fwd direction
- Minimum occupancy anywhere
- Low material budget in endplates
- 0.4% higher reconstruction efficiency in multi-jet events

Possible Solutions

See F. Grancagnolo talk

- Smaller cells with PET wires
- Adopt an Hibrid detector (gas + Si)

Beam Pipe and VXD layout

• Beam Pipe:

- 400 µm Be
- 25 μm Ti
- VXD: SiD/4th Concept
 - 5 barrel layers x 4 endcaps
 - 20 μm x 20 μm pixel size
 - Detector support: 100 μm CarbonFiber
 - Si modules: 100 μm
 Si

Material Budget

- Beam Pipe: 0.18% X/X_o
- VXD:
 - Detector & support: 0.8% X/X_o

VTX layout

layer	ladders
	12
2	12
3	18
4	24
5	30

endcap	sectors
1	12
2	12
3	12
4	12

June 11th, 2008
VXD Single Cluster Resolution with Full Digitization (single track)

Effect of Beam Background

- tt-bar->6jets
- 1 BX (average over 1000 BX's)
- 5T magnetic field
- Geant threshold: **1MeV**
- VTX threashold: <u>3000 e</u>-

Effect of Beam Background: #hits per layer

Effects on Track Reconstruction of 1 BX Background

- Reconstruction efficiency for ttbar->6jets in VTX+DCH is mostly unaffected
- Fake clusters: 0.4% ->0.7%
- Reconstruction efficiency for ttbar->6jets in VTX+SiT decreses by 0.5%
- Fake clusters: 5.5% ->6%

Old study with 1MeV threashold in Geant

- VTX performance depends heavily on the technology chosen for the Central Tracker
- Careful studies with multiple BX's are required
- Geant3 and Fluka not adequate for such studies

June 11th, 2008

Optimizing the Hadronic Calorimeter

- New HCAL layout (3rd version)
- Still improving simulation algorithms
- Waveform analysis -> disentangling the neutron component
- EM Calorimeter studies

The 4th Concept Hadronic Calorimeter (third version) Cu + scintillating fibers + Ĉerenkov fibers ~1.4° aperture angle ~ 10 λ_{int} depth Azimuth coverage down to 2.8° Barrel: 16384 cells Endcaps: 7450 cells

June 11th, 2008

Hadronic Calorimeter Cells

Prospective view of clipped cell

300 µm radius Plastic/Quartz fibers Aperture Number=0.50 (C fibers)

Top cell size:~ 8.1 × 8.1 cm²

Number of fibers inside each cell: ~1600

equally subdivided between Scintillating and

Cerenkov

Fiber stepping ~2 mm

Cell length: 150 cm

Each tower works as two independent towers in the same ILC ECFA2008 - C. Gatto volume Bottom cell size: ~ 4.4 × 4.4 cm² $_{43}$

Total calorimeter energy: use two measured signals and two, energy-independent, calibration constants

$$E_{HCAL} = \frac{\eta_{S} \cdot E_{S} \cdot (\eta_{C} - 1) - \eta_{C} \cdot E_{C} \cdot (\eta_{S} - 1)}{\eta_{C} - \eta_{S}}$$

June 11th, 2008

Total calorimeter energy: use two measured signals and two, energy-independent, calibration constants

Total calorimeter energy: use two measured signals and two, energy-independent, calibration constants

Total calorimeter energy: use two measured signals and two, energy-independent, calibration constants

Simulation Details

- ILCroot framework
- Pandora-Pythia, Whizard, Sherpa, CompHEP, GuineaPig to generate events
- Fluka to track particles across the detectors
- Scintillation and Cerenkov light handled with appropriate algorithms
- Full digitization/clusterization (noise, thresholds, etc.)
- Full pattern recognition
 - Clusterization = collection of nearby "digits"
 - Unfolding of overlapping showers through Minuit fit to shower shape
 - Durham for jet-finding/reconstruction

June 11th, 2008

ILC ECFA2008 - C. Gatto

Event Display in ILCroot

e⁺e⁻ -> H^oH^oZ^o -> 4 jets 2 muons ECM = 500 GeV

Low pt secondary muon

Total Energy Resolution for di-jets ^{Di-jets events} (gaussian fit)

Z_o Mass (with Gaussian fit)

W/Z Mass Separation $e^+e^- \rightarrow W^+W^-vv, Z^oZ^ovv$

- Simple Durham jetfinder a la L3 (fixed/variable ycut) used for this analysis
- No combined information with tracking yet
- 4-jets finding efficiency:
 95%

Study by A. Mazzacane

June 11th, 2008

ILC ECFA2008 - C. Gatto

The Constant Term Problem: shape From V. Di Benedetto Calor08

Top view of the shower of a 45 GeV e⁻

core

From V. Di Benedetto Improving the Energy Resolution: The Effect of Neutrons 45 GeV π^-

at Calor08

Improving the jet reconstrucion: combine calormetric and tracking informations

(A. Mazzacane Ph.D work)

Jet axis 1

Cone 1

The 4th Concept Electromagnetic Calorimeter

June 11th, 2008

4th Concept Crystal Calorimeter

	Version A	Version B	
Crystals	BGO (20 cm)	PbF_2 with 0.15% Gd doping 25 cm	
Scintillation yield	5 pe/MeV	4.5 pe/MeV	θ=90* θ=45* θ=22.1* r=4.61 n
Cerenkov yield	0.6 pe/MeV	1.4 pe/MeV	Version B
Dimensions	1 x 1 x 20 cm	2 x 2 x 25 cm	Tower Fibers Fibers Tower Tower
Rin, Rout cm	155,175	155, 180	
material in front	5% X/Xo + tracking	None + tracking	
Depth())	~ 17.9 X/X _o	~ 27.7 X/X _o	Crystals r=2.51 m Crystals Crystals
Depth (λ)	~0.88 λ	~1.25 λ	r=1.70 m
Granularity	~0.38°	~0.76°	r=1.50 m
Coverage in θ	3.4 °	3.4°	
Total cell barrel	222784	55696	
Total cell endcaps	2*50624	2*25312	

ILC ECFA2008 - C. Gatto

70 GeV π° in ECAL+HCAL

Resolution for π° in ECAL+HCAL

Performance Summary

Hadron Calorimeter (fibers)			
Single hadron	$\oplus 1.5\%$	$\oplus 1.7\%$	
Total visible di-jet	$\oplus 1.1\%$	$\oplus 1.1\%$	
Single jet	⊕ 1.2%	$\oplus 0.8\%$	

Electromagnetic Calorimeter		
Single electron		

Hadron + Electromagnetic Calorimeter		
Single π°		$\oplus 0.1\%$
June 11th, 2008		ILC ECFA2008 - C. Gatto 74

ECAL+HCAL Issues

- Preliminary studies on ECAL+HACAL for hadronic showers and jets
- Making ECAL and HCAL working together is not trivial
- Simple merging of the two showers is not working
- Need a more involved calibration
- Otherwise need to give up the crystals or make a purely crystal calorimeter

Summary of Optimization Studies

- Resolutions with multi-jets are dominated by multiple scattering in VTX + central tracker
- Redundancy of measurements and <u>seeding in central</u> <u>tracker</u> is fundamental for good/safe performance
- Small drift cell (drift time<= time between BXs) relax the requirements on the VTX
- VTX resolution likely not an issue (for pixels about 20 μm x 20 μm x)
- VTX material budget of 1% X/X_o is OK
- Energy resolution in Dual Readout calorimeter is unaffected by smaller tower
- However, larger towers decrease the constant term

Conclusions

- Optimization studies are well under way
- Critical issues have been pinpointed
- ILCroot is being continuously upgraded, with newer versions of the subdetectors
- Simulation consolidation phase is mostly concluded
- Physics benchmark studies will start shortly
- We just learnt that Fluka must be used for shower simulation and G4 for tracking (not a problem in ILCroot)
- Muon detector studies have been deferred

June 11th, 2008

Backup slides

June 11th, 2008

4thConcept ILC Drift Chamber Layout

Hexagonal cells f.w./s.w.=2:1

cell height: 1.00 ÷ 1.20 cm cell radius: 6.00 ÷ 7.00 mm

(max. drift time < 300 ns !)

20 superlayers, in 200 rings 10 cells each (7.5 in average) at alternating stereo angles ±72 ÷ ±180 mrad (constant stereo drop = 2 cm)

60000 sense w. 20 µm W 120000 field w. 80 µm Al

"easy" t-to-d r(t) (few param.)

>90% sampled volume

2007 INTERNATIONAL

F. Grancagnolo. --- CLUCOU for ILC ---

<u>CLUster</u> <u>COUnting</u>

MC generated events: 2cm diam. drift tube gain = few x 10 gas: 90%He-10%iC4H10 no electronics simulated vertical arbitrary units

cosmic rays triggered by scintillator telescope and readout by: 8 bit, 4 GHz, 2.5 Gsa/s digital sampling scope through a 1.8 GHz, x10 preamplifier

2007 INTERNATIONAL LINEAR COLLIDER WORKSHOP

Pulls (full digitization)

$e^+e^- -> Z_oH_o -> \mu^+\mu^-X$ + $e^+e^- -> Z_oZ_o -> \mu^+\mu^-X$ background [E_{cm}=230]

- Momentum spectrum for generated tracks entering the central tracker region
- Standard benchmarck channel
- Used as reference with existing analyses

June 11th, 2008

$e^+e^- \rightarrow ttbar \rightarrow 6jets E_{cm} = 350$

- Momentum spectrum for generated tracks entering the central tracker region
- One of channels with softest charged tracks

June 11th, 2008

e⁺e⁻ -> W⁺W⁻ ->4jets Ecm=350

- W⁺ and W⁻ generated mostly in the forwar/backward direction
- Channels with soft charged tracks emitted in the forward direction

June 11th, 2008

The Framework: ILCroot

- Integrated framework for generation, simulation, reconstruction and analysis
- CERN architecture (Aliroot)
- Uses ROOT as infrastructure
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- TGenerator for events generation
- Virtual Geometry Modeler (VGM) for geometry
- Virtual Montecarlo (VMC) for simulation
- Six MDC have proven robustness, reliability and portability
- Available via cvs repository at Fermilab:
 - cvs -d :pserver:anonymous@cdcvs.fnal.gov:/cvs/ilcroot co
- For the installation, see: <u>http://www.fisica.unile.it/~danieleb/IlcRoot</u>

The Virtual Montecarlo Concept

- Virtual MC provides a virtual interface to Monte Carlo
- It decouples the dependence of a user code on a concrete MC
- It allows to run the same user application with all supported Monte Carlo programs
- The concrete Monte Carlo (Geant3, Geant4, Fluka) is selected and loaded at run time
- Choose the optimal Montecarlo for the study

A Modular Approach: The Detector Class

- Both sensitive modules (detectors) and non-sensitive ones are described by this base class.
- This class must support:
 - Geometry description
 - Event display
 - Simulation by the MC
 - Digitization
 - Pattern recognition
 - Local reconstruction
 - Local PiD
 - Calibration
 - QA
 - Data from the above tasks
- Several versions of the same detector are possible (choose at run time)

- The geometry can be specified using:
 - Root (TGeo)
 - Geant3
 - Geant4
 - Fluka
 - GDML
 - XML
 - Oracle
 - CAD (semi-automatic)

VXD SDigitization

- Follow the path of the track inside the silicon in steps of 1 μm
- Per each step:
 - convert the energy deposited into charge
 - spreads the charge asymmetrically across several pixels:

$$f(x, z) = Errf(x_{step}, z_{step}, \sigma_x, \sigma_z)$$
$$\sigma_x = \sqrt{T \cdot k / e \cdot \Delta l / \Delta V \cdot step}$$

 $\Delta l = Sitickness, \quad \Delta V = bias \ voltage, \quad \sigma_x = \sigma_x \cdot fda$

- Simulate capacitive pixel coupling by switching on nearby pixels
- Add random noise
- Simulate electronic threshold

June 11th, 2008

Clusterization For VXD

- Create a initial cluster from adjacent pixels (sidewise only)
- subdivide the initial cluster in smaller
 - NxN clusters (to be optimized)
- Kalman filter picks up the best clusters

SDigitization Parameters

- Size Pixel X = 20 µm
- Size Pixel Z = 20 μm
- Eccentricity = 0.85 (fda)
- Bias voltage = 18 V volts
- cr = 0% (coupling probability for row)
- cc = 4.7% (coupling probability for column)
- threshold = 3000 Electrons
- electronics = 0 (elettronic noise)

SDigitization in Strips Detector

- Get the Segmentation Model for each detector module (allows for different segmentations)
- Load background hits from file (if any)
- Loop on the hits and create a segment in Si in 3D
 - Step inside the Si in equal size increments
 - Compute Drift time to p-side and n-side:
 tdrift[0] = (v+(sog >Dv()*1 OF 4)(2)(CotDrift)(oloc
 - tdrift[0] = (y+(seg->Dy()*1.0E-4)/2)/GetDriftVelocity(0);
 - tdrift[1] = ((seg > Dy()*1.0E-4)/2-y)/GetDriftVelocity(1);
 - Compute diffusion constant:
 - sigma[k] = TMath::Sqrt(2*GetDiffConst(k)*tdrift[k]);
 - integrate the diffusion gaussian from -3 σ to 3 σ
 - Charge pile-up is automatically taken into account

SDigitization in Strips (cont'd)

- Add gaussian electronic noise per each side separately: s/n = 20
- Add coupling effect between nearby strips
 different contribution from left and right neighbours
 Proportional to nearby signals (B-field effect)
- Threshold = 3 x noise

Clusterization in Strip Detector

- Create an initial cluster from adjacent strips
- Separate into Overlapped Clusters
 - Look for through in the analog signal shape
 - Split signal of parent clusters among daugheter clusters

Intersect stereo strips to get Recpoints from CoG of signals (and error matrix)
Kalman filter picks up the best Recpoints

The Parameters fot the Strips

- Strip size (p, n): 50 mm
- Stereo angle (p-> 17.5 mrad, n->17.5 mrad)
- Ionization Energy in Si = 3.62E-09
- Hole diffusion constant (= 11 cm²/sec)
- Electron diffusion constant (= 30 cm²/sec)
- v^P_{drift}(=0.86E+06 cm/sec) , v^N_{drift}(=2.28E+06 cm/sec)
- Calibration constants
 - Gain
 - ADC conversion (1 ADC unit = 2.16 KeV)
- Coupling probabilities between strips (p and n)
- σ of gaussian noise (p AND n)
- threshold

June 11th, 2008

DCH SDigitization (in progress)

- Follow the path of the tracks inside the cell
- Per each deposited energy step:
 - convert the energy deposited into charge
 - Drift charge toward sense wire using Magboltz parameters
 - Add charge to FADC corresponding channel
- Add random noise
- Simulate electronic threshold

Clusterization For DCH (Cluster Counting)

- Clusterization is done per cell
- Shape analisys od FADC count
- Returns as many recpoints as the number of recognized clusters (max 2)

Tracking Algorithm (for TPC and DCH)

- Primary TPC/DCH seeding: looks for tracks with 20 hits (pads and/or µmegas) apart + <u>beam constraint</u>
- Secondary TPC/DCH seeding: looks for tracks with hits in layer 1, 4 and 7 (<u>no beam constraint</u>)
- **Parallel Kalman Filter** then initiated:
 - 1st step: start from TPC/DCH fit + prolongation to VXD (add clusters there)
 - 2st step: start from VXD, refit trough TPC/DCH + prolongation to MUD
 - 3st step: start from MUD and refit inword with TPC + VXD
- Final step: isolated tracks in VXD (see next slide) and in MUD*
- Kinks and V0 fitted during the Kalman filtering
- All passive materials taken into account for MS and dEdx corrections

*not yet implemented ILC ECFA2008 - C. Gatto

VXD Standalone Tracker

- Uses Clusters leftover from Parallel Kalman Filter
- Requires at least 4 hits to build a track
- Cluster finding in VXD in two steps
 - Step 1: look for 3 RecPoints in a narrow row or 2 + the beampoint.
 - Step 2: prolongate to next layers each helix constructed from a seed.
- After finding clusters, all different combination of clusters are refitted with the Kalman Filter and the tracks with lowest χ^2 are selected.
- Finally, the process is repeated attempting to find tracks on an enlarged road constructed looping on the first point on different layers and all the subsequent layers.
- In 3.5 Tesla B-field -> P_t > 20 MeV

June 11th, 2008

