Development & Results

10.06.2008 M. Stanitzki for the SiD PFA Group

STFC-Rutherford Appleton Laboratory

Outline

- PerfectPFA studies
- The IowaPFA
- Optimizing SiD with PandoraPFA

SiD Perfect Pattern Recognition

- Cheat on tracking: correctly assign tracker hits, if sufficient number of hits smear parameters. If insufficient number of hits treat as neutral.
- Correctly assign hits in the calorimeter: If sufficient number of hits use them to reconstruct neutrals. (both energy and direction)

ΔE results for SID01

Perfect pattern recognition reconstruction - sid01

Science & Technology Facilities Council Rutherford Appleton Laboratory

Mass resolution

perfect pattern recognition - delta Zmass - sid01

PPRCLusters

- PPRClusters: Cluster hits in the calorimeters, discard clusters with < 3 hits, and assign clusters to the particle contributing the most energy to the cluster. Then proceed as above.
- This is though cheating on assignments a more realistic approach

ΔE results for SID01 Using PPRClusters

PPRClusters - sid01

Definitions

- For comparison purposes, define
 - $\Delta E = \sqrt{2*rms_{90}}/mean_{90} + \langle E \rangle$ of the total reconstructed energy distribution in fixed cm energy events

Radial dependence

sqrt(2)*rms90/(230+mean90) in ZZ->qqnunu events at 500 GeV

Science & Technology Facilities Council Rutherford Appleton Laboratory

10

Conclusions

- The large difference in energy resolution for scintillator vs RPC translates into a small difference in jet energy resolution.
- Real clustering, even when cheating on assignments, has an impact on performance, and we start seeing a radial dependence.

IowaPFA

- using org.lcsim
- Supports both RPC and Scintillator readout in the HCAL
- Choice of
 - cluster algorithms
 - photon finders
- uses track cheating up to now

sid01

sid01 HCAL with RPC's

sid01_scint

sid01_scint Scintillator HCAL with digital readout

sid01_scint Scintillator HCAL with analog readout

Looking at $\Delta M/M$

HCAL	ΔΜ/Μ
Steel/RPC	4.9-5.1%
Steel/Scintillator	4.7-4.8%
W/Scintillator	4.7-4.9 %
W/RPC	5.5%

- $\Delta M = rms_{90}$
- M=mz-mean₉₀

- Use the current best Particle Flow Algorithm
 - PandoraPFA by Mark Thomson
- Start optimizing SiD
 - ECAL radius and length
 - B field
 - HCAL depth segmentation
- Caveat : Only works well within Mokka/Marlin Framework
- No real SiD detector model available in this framework
- Have to use a SiD look-alike, the SiDish

The setup

- Use PandoraPFA 2.01 & LCPHYS
- LDC00Sc Model
- Define SIDish
- Use track cheating
 - tracking shouldn't matter ... to first order
- Detector Summary:

	LDC00Sc	SIDish
ECAL inner radius	1.7 m	1.25m
ECAL length	2.7 m	1.7 m
ECAL layers	30+10	20+10
ECAL material	SiW	SiW
HCAL layers	40	40
HCAL material	Fe-Scint	Fe-Scint
Field	4 T	5 T

B Field

• SiD •

ECAL inner radius

Detector TAG	rms90 (91 GeV)	rms90	(200	GeV)
LDC00Sc	24.6 ±	± 0.3	29.7	±	0.5
SIDish	27.9 ±	± 0.4	35.4	±	0.7
SIDish_r10_z17	30.4 ±	± 0.4	42.5	±	8.0
SIDish_r15_z17	27.7 ±	± 0.4	34.4	±	0.6

ECAL length

- Study forward performance
- Special Samples
 - 1 u jet at $\cos\theta=0.92$
 - available at 100 GeV
- Will extend study to higher energies

	C00Sc	
	SIDish_r12 SIDish	25_z19 _
 u (100	– – ' GeV)	
α%	Error	
40.2	0.4	
29.6	0.3	
44.2	0.5	
38.3	0.4	
	LC u (100 α % 40.2 29.6 44.2 38.3	LDC00Sc SIDish_r12 SIDish SIDIS SI

ECAL length (II)

Forward performance depends linearly from detector length

science & Technology Facilities Council Rutherford Appleton Laboratory

HCAL segmentation

- Use SIDish
- HCAL as Fe-Scint
- Fix λ_{Iron} to 4.5
- vary number of layers
 - 30,40, 50

Dotostor Tog		uds (9	1 Gev)	uds (200 GeV)		
Delector ray	Layers	α %	Error	α%	Error	
SIDish_v2_hcal30_l45	30	29.6	0.4	39.9	0.7	
SIDish_v2_hcal40_l45	40	29.3	0.4	38.7	0.7	
SIDish_v2_hcal50_l45	50	28.2	0.7	36.7	0.7	

Results

ECAL segmentation

- Is the ECAL optimal ?
 - we see a small benefit going from 20+10 to 30+10 layers
 - better segmentation helps ?
 - or just pure thickness ?
- Made a SiDish_ecal_q37
 - SiDish with 37 layers but same overall thickness
- Make a SIDish_ecal25_50
 - 20+10 layers
 - 2.5 mm /5.0 mm tungsten thickness and smaller gaps (1 mm)
 - will change global radius (very small effect)

				~ /0		~ /0		1
SIDish	1.4/4.2 mm	20+10	20	27.9	0.4	35.4	0.7	
SIDish_ecal40	1.4/4.2mm	30+10	24	27.1	0.5	33.9	0.6	
SIDish_ecal_eq37	1.41 mm	37	15	28.1	0.4	37.6	0.6	
SIDish_ecal25_50	2.5/5.0 mm	20+10	29	27.3	0.4	35.1	0.6	
Facilities Council		2	5			Ма	rcel St	anitzki

Summary

- SiD is on its way to fix the general detector parameters
 - ECAL radius and length
 - B field
 - HCAL depth segmentation
- Tools are coming online
- We' II have a detector frozen soon (~ month)
- Thanks to Ron Cassell, Matt Charles, Steve Magill, John Jaros, Norman Graf, Harry Weerts and Andy White for contributions to this talk.

