A 4th generation scenario

F. Richard LAL/ Orsay

Introduction

- In view of the LHC start, it seems worthwhile to envisage unexpected (but well motivated) scenarios which would strongly impact on I LC Examples:
Discovery of a heavy Higgs
- Discovery of heavy fermions with or without SUSY
This talk is presenting one of these scenarios

Outline

Is a 4th generation allowed by LEP/SLC/TeVatron PM?

Is it useful and why?
What does it predict?

4th \& PM

Common wisdom (PDG): $4^{\text {th }}$ chiral generation is excluded by S/T constraints.
Excluded only for the mass degenerate case

$$
\Delta \mathrm{T}=0 \quad \Delta \mathrm{~S}=3 / 4 \pi
$$

$$
\Delta S=\frac{N_{c}}{6 \pi}\left(1-2 Y \ln \frac{m_{u}^{2}}{m_{d}^{2}}\right)
$$

$$
\Delta T \sim \frac{\Delta m^{2}}{(150 G e V)^{2}}
$$

One can play with the >0 correlation between these variables and easily pass the constraints when fermions are partially degenerate in mass

An example

parameter set	$m_{u_{4}}$	$m_{d_{4}}$	m_{H}	$\Delta S_{\text {tot }}$	$\Delta T_{\text {tot }}$
(a)	310	260	115	0.15	0.19
(b)	320	260	200	0.19	0.20
(c)	330	260	300	0.21	0.22
(d)	400	350	115	0.15	0.19
(e)	400	340	200	0.19	0.20
(f)	400	325	300	0.21	0.25

G. Kribs et al

htto: //arxiv.org/abs/0706.3718v1
Heavy Higgs allowed

F. Richard ECFA Study June 2008

Motivation for >3 generations

Baryogenesis needs C+CP violation \& strong EW 1st order transition
SM alone

- Not enough CPV
- Insufficient EW transition

MSSM alone

- New phases but severely constrained by EDM
- EW transition not strong enough unless very FT (light stop ?)
- -> extra particles needed, strongly coupled to the Higgs field, scalars or fermions
(cf. M. Carena et al hep-ph 0410352)

4th generation

- CPV fine (2 extra phases in CKM; Jarlskog determinant >> SM)
- Large Yukawa couplings y_{t}, to Higgs field (NB: y_{t}, and quartic coupling λ become strong at scale $\Lambda \sim T e V)$
- However not enough to get the right EW transition
- Works including SUSY, hence 4MSSM
R. Rok G. Kribs arXiv:0803.4207

Predictions:

$300<\mathrm{Mt}^{\prime}, \mathrm{b}^{\prime}<450 \mathrm{GeV}+$ lighter leptons

- Squarks ~ mass degenerate with quarks
- Higgs could be heavy through RC
- Spectacular \& early signals at LHC
- Accessible at a TeV LC (heavy leptons)
- Note that Tevatron already excludes $\mathrm{mt}^{\prime}<260$ GeV \& $140<\mathrm{mH}<180 \mathrm{GeV}$
- The latter is due to X 9 cross section in gg->H

Search at TeVatron

- Recent CDF update 2.3fb-1
htto://www-cdf.fnal. gov/physics/new/top/2008/torop TTprime2.3/cdf9234 torime 23 pub. pdf
- Slight excess above this limit
- Assumes t'->Wq with $\mathrm{mt}^{\prime}-\mathrm{mb}^{\prime}<\mathrm{Mw}^{2}$
- Should therefore add the b' contribution X2 ?
-> mt', $\mathrm{b}^{\prime}>330 \mathrm{GeV}$?

The flavour sector

- BS SM mixing goes like ~mtVtb without CPV
- mt'Vt'b could be of similar size

$$
\frac{N P}{S M}=\frac{m_{t^{\prime}} \cdot V_{t^{\prime} b} V_{t^{\prime} ' s}}{m_{t}} \leq 1
$$

- Vt'b complex, then CPV present in Bs mixing
- More generally CPV present in b->s transitions while are almost absent in the SM
- Has it been seen ?

b->s with 4 generations

Several indications b->s 'penguin' transitions but plagued by usual QCD uncertainties
cf. e.g. K puzzle G. Hou arXiv:0710.5424

- For the 1st time Tevatron is measuring the time dependence of the 'gold plated' mode J/ $\Psi \Phi$ with tagged events
Could provide an unambiguous answer with sufficient statistics
- Watch carefully

UTfit

Recent but unofficial (UTfit collaboration) combination of CDF ($1.35 \mathrm{fb}-1$) +D0 gives $\sim 3 \sigma$ effect with 2 solutions
One of them has NP/SM<1
http://fr.arxiv.org/abs/0803.0659v1

$\phi_{s}^{\mathrm{NP}}\left[{ }^{\circ}\right]$	-51 ± 11
	-79 ± 3
$A_{s}^{\mathrm{NP}} / A_{s}^{\mathrm{SM}}$	0.73 ± 0.35
	1.87 ± 0.06

$$
C_{B_{s}} e^{2 i \phi_{B_{z}}}=\frac{A_{s}^{\mathrm{SM}} e^{-2 i \beta_{x}}+A_{s}^{\mathrm{NP}} e^{2 i\left(\phi_{s}^{\mathrm{SP}}-\beta_{z}\right)}}{A_{s}^{\mathrm{SM}} e^{-2 i \beta_{s}}}
$$

$\Delta \mathrm{ms}$

The UTfit negative phase predicts a destructive interference SM-NP with reduction on $\Delta \mathrm{ms}$

- Indicated by the CKM fit

Other interpretations are obviously possible within SUSY (one of them gave NP>>SM but not CPV !)

(1) Keep an eye on these developments

Possible scenario

At LHC an early discovery of the new fermions + SUSY squarks

- A heavy Higgs very easily observed or a light Higgs as difficult as SM
(same 2γ rate but $\mathrm{H}->2 \mathrm{~g}$ prominent)
- Rich and confusing
- ILC very powerful in particular for leptons and for a light Higgs

Final remarks

a For simplicity one assumes a 4th generation, simple replica of the first 3

- It seems that this is an unnecessary limitation
- What matters is the occurrence of extra heavy quarks which provide the extra degrees of freedom needed for baryogenesis and CPV in the b sector
- Models predicting KK extra fermions e.g. on the basis of ND>4 could also provide similar mechanisms

Conclusion

- A reasonably well motivated scenario
- Requires SUSY but cannot be extrapolated to GUT because of the large Yukawa constants
- Early signals expected at LHC (or even at Tevatron with full luminosity)
Allows for a heavy Higgs within SUSY
- Rich physics for a TeV LC
- Watch for the Bs sector @ Tevatron
- $->$ Could serve as an illustration of LHC/LC complementarity

Bevond the 3SMoenerationat the HHC era
 4-5 September 2008

http://indico.cern.ch/conferenceDisplay.py?confI d=33285

