IN 2 P 3

Second generation ASICS for CALICE/EUDET calorimeters

C. de LA TAILLE

on behalf of the CALLEE collaboration

Orsay Micro Electronic Group Associated

ILC Challenges for electronics

First generation ASICs

- Readout of physics prototypes (ECAL, AHCAL, DHCAL)
 - Front-end ASICs outside the detector
 - Multiplexed analog output : digitization and readout in DAQ crate
 - FLC_PHY3 for SiW ECAL, FLC_SiPM for AHCAL (BiCMOS 0.8µm [LAL-Orsay]) and DCAL for DHCAL (CMOS 0.25 µm [FNAL])
 - Chips described at CALOR2004 and CALOR2006
 - [see also CALOR08 talks by JC Brient, R. Cornat, J. Repond, F. Sefkow, F. Salvatore & E. Garutti]

CALICE Testbeam at DESY, CERN & FNAL

Second generation ASICs

- Add auto-trigger, analog storage, digitization and token-ring readout !!!
- Include power pulsing : <1 % duty cycle
- Address integration issues asap
- Optimize commonalities within CALICE (readout, DAQ...) [see talk by V. Bartsch]

Technological prototypes : "EUDET mousineaa

1000

Module ECAL

1700 (1500)

- Front-end ASICs embedded in detector HCAL
 - Very high level of integration
 - Ultra-low power with pulsed mode
 - Target « analog friendly » SiGe technology
- All communications via edge
 - 4,000 ch/slab, minimal room, access, power
 - small data volume (~ few 100 kbyte/s/slab)
- EUDET funding for fab in 2009
- [AHCAL : see talk by F. Sefkow]
- [DHCAL : see talk by I. Laktineh]

ECAL

× 5000 (4200)

EUDET module FEE : main issues

- "stictchable" motherboards
 - Minimize connections between boards
- No external components
 - Reduce PCB thickness to $< 800 \mu m$
 - Internal supplies decoupling
- Mixed signal issues
 - Digital activity with sensistive analog front-end
- Pulsed power issues
 - Electronics stability
 - Thermal effects
 - To be tested in beam a.s.a.p
- Low cost and industrialization are the major goal

ECAL detector slab

- Chips bonded on ASU (Active Sensor ٠ Uni⁺₃)
- Study connection between ASUs •

Read out : token ring

- Readout architecture common to all calorimeters
- Minimize data lines & power

CALOR08 Pavia 25 may cdlt : 2nd generation ASICs for CALICE/EUDET

The front-end ASICs : the ROC chips

DHCAL chip : HaRDROC

- Hadronic Rpc Detector Read Out Chip (Sept 06)
 - 64 inputs, preamp + shaper +
 2 discris + memory + Full
 power pulsing
 - Compatible with 1st and 2nd generation DAQ : token ring readout of up to 100 chips
 - 1st test of 2nd generation DAQ and detector integration
- Collaboration with IPNL/LLR/Madrid/Protvino/
 - 1m³ <u>scalable</u> detector
 - [see talk by I. Laktineh]

CALOR08 Pavia 25 may

Production of 5000 chips in 2009

cdlt : 2nd generation ASICs for CALICE/EUDET

HaRDROC architecture

- Variable gain (6bits) current preamps (500hm input)
- One multiplexed analog output (12bit)
- Auto-trigger on 1/2 MIP
- Store all channels and BCID for every hit.
 Depth = 128 bits
- Data format : 128(depth)*[2bit*64ch +24bit(BCID)+8bit(He ader)] = 20kbits
- Power dissipation : 1.5 mW/ch (unpulsed) > 15µW with 1% cycle
- Large flexibility via >500 slow control settings

S-curves of 64 channels

10 bit DAC for threshold, • 50% trigger versus channel number Noise ~ 1 UDAC (2mV) ullet320 Pedestal dispersion : 0.4 ullet310 **UDAC** rms Gain dispersion 3% rms ullet300 **30 fC** Crosstalk : < 2%Աստույսնով ᠕ᡁᠺᢦᡘᡙᡡᡒ᠕ᡁ᠓ᠺ • **Dac unit** 290 280 270 100 10 fC ուտըս 80 260 **Frigger Efficiency** 60 250 Pedesta 40 240 10 0 20 30 40 50 60 20 **Channel number** 0 25 50 75 125 150 175 200 0 100 Threshold in fC

CALOR08 Pavia 25 may cdlt : 2nd generation ASICs for CALICE/EUDET

Power pulsing : « Awake » time

- PWR ON: ILC like (1ms,199ms)
- All decoupling capacitors removed : difficult compromise between noise filtering and fast awake time
- Awake time :
 - Anaog part = 2 us
 - DAC part = 25 us
- 0.5 % duty cycle achieved, now to be tested at system level

<u>()mega</u>

SKIROC for W-Si ECAL

- Silicon Kalorimeter Integrated Read Out Chip (Nov 06)
 - 36 channels with 15 bits Preamp + bi-gain shaper + autotrigger + analog memory + Wilkinson ADC
 - Digital part outside in a FPGA for lack of time and increased flexibility
 - Technology SiGe 0.35µm AMS. Chip received may 07

12 bit Wilkinson ADC performance

AHCAL chip : SPIROC

- Silicon Photomultiplier
 Integrated Read Out Chip
 - A-HCAL read out
 - Silicon PM detector G=10⁵-10⁶
 - 36 channels
 - Charge measurement (15bits)
 - Time measurement (< 1ns)
 - many SKIROC, HARDROC, and MAROC features re-used
 - Submitted in june 07 in SiGe
 0.35 µm AMS
- Collaboration with DESY
 - Production in 2009 for Eudet module
 - [see talk by F. Sefkow]

SPIROC main features

- Internal input 8-bit DAC (0-5V) for SiPM gain adjustment
- Energy measurement :
 - 2 gains / 12 bit ADC 1 pe \rightarrow 2000 pe
 - Variable shaping time from 50ns to 100ns
 - pe/noise ratio : 11
- Auto-trigger on 1/2 pe
 - pe/noise ratio on trigger channel : 24
 - Fast shaper : ~15ns
 - Auto-Trigger on ½ pe
- Time measurement : 12 bit TDC step~100 ps
- Analog memory for time and charge measurement : depth = 16
- Low consumption : ~25µW per channel (in power pulsing mode)
- Calibration injection capacitance
- Embedded bandgap for voltage references
- Embedded DAC for trigger threshold
- Compatible with physic prototype DAQ
 - Serial analogue output
 - External "force trigger"
- 12-bit Bunch Crossing ID
- SRAM with data formatting 2 x 2kbytes = 4kbytes
- Output & control with daisy-chain

SPIROC : one channel

SPIROC performance

- Good analog performance
 - Single photo-electron/noise = 8
 - Auto-trigger with good uniformity
 - Complex chip : many more measurements needed

CALOR08 Pavia 25 may cdlt : 2nd generation ASICs for CALICE/EUDET

<u>()mega</u>

Power supplies issues

- A very critical issue !!! As usual, noone's looking...
- Power supplies won't be dimensionned for continuous operation, but for 1/100 of the load. Total power : ~2kW, peak value ~200kW !!
- Need local storage (capacitors, even a battery!) on power board and regulators to accomodate large voltage swing
- Simple calculation (ECAL)
 - Slab = 24 000 channels
 - 1 mA/channel unpulsed => 24 A/slab peak, 240mA average
 - With a $24 \ 000\mu$ F capacitor dV/dt = 1V/ms = > acceptable

Conclusion

- Good progress on 2nd generation ASICs
 - Power pulsing
 - Token-ring readout
 - Integration inside detector
 - Low noise/Large dynamic range
- Production foreseen beg 2009 for technological prototypes
 - Still many integration issues to be studied
 - Crucial for detector feasibility
- 3rd generation chips still to come
 - Alternative ADC designs
 - All channels treated independently

Multi Project Run vs Dedicated Run

- 25 dies delivered in September 08, to be packaged
- About 300 dies available (no guaranty): 100 euros/die + packaging
- Price : 25 k€ + 100 € * nb_chips

• Engineering run:

- Wafer 8" Available area=23 000 mm
- 1 reticle= $20x^{20}$ mm²=400 mm²
- => 65 reticles/wafer
- 16 chips (25 mm²) / reticle => 1000 Hardroc/wafer
- Cost : 150 k€ (masks) + 5k€/wafer
- Price : 150 k€ + 5 € * nb_chips
- valuable for more than 1250 chips

()mega

Digital part

- Full daisy-chain readout
 - Internal or external Trigger
 - OR36 output
 - Discriminator
 Validation fast input
 - 4kbyte RAM
 - « Open collector » output signals
 - LVDS clocks
 - Start conversion
 - Start/end readout

()mega