Constraining SUSY with Electroweak Precision Observables

Sven Heinemeyer, IFCA (Santander)

Warsaw, 06/2008

based on collaboration with W. Hollik, A.M. Weber and G. Weiglein

- 1. Introduction
- 2. Calculation of the electroweak precision observables
- 3. Numerical results
- 4. Conclusions

1. Introduction

Q: How to detect Supersymmetry (or any other BSM)?

A: Two possible ways:

• Search for new SUSY particles

Problem:

SUSY particles are too heavy for todays colliders, only lower limits of $\mathcal{O}(100 \text{ GeV})$.

- \rightarrow waiting for Tevatron (2008/09...?)
- \rightarrow waiting for LHC (2009/10...?)
- Search for indirect effects of SUSY via Precision Observables

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

EW Precision data:
$$M_W, \sin^2 \theta_{\rm eff}, \Gamma_Z, \ldots$$
Theory:
 $SM, MSSM, \ldots$ \downarrow

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

Example: Prediction for M_W in the SM and the MSSM : [S.H., W. Hollik, D. Stockinger, A.M. Weber, G. Weiglein '07]

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } \frac{1}{2} \\ \begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} & \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} & \text{Spin } 0 \\ g & \underbrace{W^{\pm}, H^{\pm}}_{\tilde{\chi}_{1,2}} & \underbrace{\gamma, Z, H_{1}^{0}, H_{2}^{0}}_{\tilde{\chi}_{1,2,3,4}} & \text{Spin } 1 \text{ / Spin } 0 \\ \begin{bmatrix} \tilde{g} & \tilde{\chi}_{1,2}^{\pm} & \tilde{\chi}_{1,2,3,4}^{0} & \text{Spin } \frac{1}{2} \end{bmatrix}$$

Enlarged Higgs sector: Two Higgs doublets

Problem in the MSSM: many scales

Problem in the MSSM: many complex parameters

 \tilde{t}/\tilde{b} sector of the MSSM: (scalar partner of the top/bottom quark)

Stop, sbottom mass matrices $(X_t = A_t - \mu^* / \tan \beta, X_b = A_b - \mu^* \tan \beta)$:

$$\mathcal{M}_{\tilde{t}}^2 = \begin{pmatrix} M_{\tilde{t}_L}^2 + m_t^2 + DT_{t_1} & m_t X_t^* \\ m_t X_t & M_{\tilde{t}_R}^2 + m_t^2 + DT_{t_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{t}}} \begin{pmatrix} m_{\tilde{t}_1}^2 & 0 \\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}$$

$$\mathcal{M}_{\tilde{b}}^2 = \begin{pmatrix} M_{\tilde{b}_L}^2 + m_b^2 + DT_{b_1} & m_b X_b^* \\ m_b X_b & M_{\tilde{b}_R}^2 + m_b^2 + DT_{b_2} \end{pmatrix} \xrightarrow{\theta_{\tilde{b}}} \begin{pmatrix} m_{\tilde{b}_1}^2 & 0 \\ 0 & m_{\tilde{b}_2}^2 \end{pmatrix}$$

mixing important in stop sector (also in sbottom sector for large tan β) soft SUSY-breaking parameters A_t, A_b also appear in $\phi - \tilde{t}/\tilde{b}$ couplings

$$SU(2)$$
 relation $\Rightarrow M_{\tilde{t}_L} = M_{\tilde{b}_L}$

 $\Rightarrow \text{ relation between } m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_{\tilde{t}}, m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_{\tilde{b}}$

Enlarged Higgs sector: Two Higgs doublets

$$H_{1} = \begin{pmatrix} H_{1}^{1} \\ H_{1}^{2} \end{pmatrix} = \begin{pmatrix} v_{1} + (\phi_{1} + i\chi_{1})/\sqrt{2} \\ \phi_{1}^{-} \end{pmatrix}$$
$$H_{2} = \begin{pmatrix} H_{2}^{1} \\ H_{2}^{2} \end{pmatrix} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{+} \\ \psi_{2}^{+} + (\phi_{2} + i\chi_{2})/\sqrt{2} \end{pmatrix}$$

$$V = m_1^2 H_1 \bar{H}_1 + m_2^2 H_2 \bar{H}_2 - m_{12}^2 (\epsilon_{ab} H_1^a H_2^b + \text{h.c.})$$

$$+\underbrace{\frac{g'^2+g^2}{8}}_{8}(H_1\bar{H}_1-H_2\bar{H}_2)^2+\underbrace{\frac{g^2}{2}}_{2}|H_1\bar{H}_2|^2$$

gauge couplings, in contrast to SM

physical states: h^0, H^0, A^0, H^{\pm}

Goldstone bosons: G^0, G^{\pm}

Input parameters: (to be determined experimentally)

$$\tan \beta = \frac{v_2}{v_1}, \qquad M_A^2 = -m_{12}^2(\tan \beta + \cot \beta)$$

Results for EWPO fit in the SM: [LEPEWWG '08]

Pull distributions:

			$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$			
Variable	Measurement	Fit	0	1 	2	3
$\Delta \alpha_{had}^{(5)}(\mathbf{m}_{Z})$	0.02758 ± 0.00035	0.02768				
m _z [GeV]	91.1875 ± 0.0021	91.1875				
$\Gamma_{\mathbf{Z}}$ [GeV]	$\bf 2.4952 \pm 0.0023$	2.4957	-			
σ_{had}^0 [nb]	41.540 ± 0.037	41.477				
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744				
A ^{0,1} fb	0.01714 ± 0.00095	0.01645		•		
$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21586				
R _c	0.1721 ± 0.0030	0.1722				
$\mathbf{A_{fb}^{0,b}}$	$\textbf{0.0992} \pm \textbf{0.0016}$	0.1038				
$\mathbf{A_{fb}^{0,c}}$	0.0707 ± 0.0035	0.0742				
A _b	$\textbf{0.923}{\pm}~\textbf{0.020}$	0.935				
A _c	$\boldsymbol{0.670 \pm 0.027}$	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1481				
$\sin^2 \theta_{\rm eff}^{\rm lept}(\mathbf{Q}_{\rm fb})$	$0.2324 {\pm} 0.0012$	0.2314				
m _w [GeV]	$\textbf{80.398} {\pm 0.025}$	80.374				
m _t [GeV]	170.9 ± 1.8	171.3	-			
Γ _w [GeV]	$\boldsymbol{2.140 \pm 0.060}$	2.091				

Probability: 15%

Within the SM: fit for the last unknown parameter: M_H^{SM}

 \Rightarrow Higgs boson seems to be light, $M_{H} \lesssim 150~{\rm GeV}$

2. Calculation of the electroweak precision observables

 $\mathcal{O} = M_W$, $\sin^2 \theta_{\text{eff}} (A_{\text{FB}}^{b,c}, A_{\text{LR}}^{e,\mu})$, R_l , R_b , σ_0^{had} , ...

Wanted: same precision for MSSM as for the SM

- \Rightarrow Combination of SM and MSSM result
- \rightarrow use best available SM result
- \rightarrow add all available MSSM corrections recalculation of full 1L result, now incl. full complex phase dependence
- \rightarrow subtract double counting
- \Rightarrow decoupling limit ok $(M_{SUSY} \rightarrow \infty)$
- \ldots but some corrections included only via their SM part

 \Rightarrow best solution

Calculation of M_W , $\sin^2 \theta_{\text{eff}}$, Γ_Z :

1.) Theoretical prediction for M_W in terms

of
$$M_Z, \alpha, G_\mu, \Delta r$$
:

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2} G_\mu} (1 + \Delta r)$$
Ioop corrections

2.) Effective mixing angle:

$$\sin^2 \theta_{\text{eff}} = \frac{1}{4 \left| Q_f \right|} \left(1 - \text{Re} \frac{g_V^f}{g_A^f} \right)$$

Higher order contributions:

$$g_V^f \to g_V^f + \Delta g_V^f, \quad g_A^f \to g_A^f + \Delta g_A^f$$

3.) Total Z width:

$$\Gamma_Z = \sum_X \Gamma(Z \to X\bar{X})$$

including higher-order corrections for all the channels

4.) *R*_b:

$$R_b = \frac{\Gamma_b}{\Gamma_{had}} = \frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to hadrons)}$$

$$R_l = \frac{\Gamma_{had}}{\Gamma_l} = \frac{\Gamma(Z \to hadrons)}{\Gamma(Z \to leptons)}$$

6.) hadronic peak cross section σ_{had}^0 :

$$\sigma_{\rm had}^{\rm 0} = 12 \, \pi \frac{\Gamma_e \Gamma_{\rm had}}{M_Z^2 \Gamma_Z^2}$$

7.) ...

More details about our calculation:

• Complex phases in the squark sector enter only via shift in squark masses (explicit dependence drops out)

$$|X_t|^2 = |A_t|^2 + |\mu \cot \beta|^2 - 2|A_t| \cdot |\mu| \cot \beta \cos(\phi_{A_t} + \phi_{\mu}) |X_b|^2 = |A_b|^2 + |\mu \tan \beta|^2 - 2|A_b| \cdot |\mu| \tan \beta \cos(\phi_{A_b} + \phi_{\mu})$$

Only some phase combinations are physical, other phases can be rotated away. Examples for physical combinations:

$$\phi_{A_t} + \phi_\mu \\ \phi_{A_b} + \phi_\mu$$

- Higgs mass dependence of the two-loop contributions is know to be very strong
 ⇒ we use FeynHiggs (www.feynhiggs.de)
- All one-loop calculations have been performed with *FeynArts* and *FormCalc*
 - [*T.* Hahn et al. '00 '07]

Treatment of the phase dependence beyond one-loop order

Phase dependence at the two-loop level approximated by a simple interpolation based on:

full phase dependence at the one-loop level, $\mathcal{O}^{1L}(\phi)$,

two-loop results for real parameters, $\mathcal{O}^{\text{full}}(0)$, $\mathcal{O}^{\text{full}}(\pi)$

 \Rightarrow Two-loop result for complex phase ϕ :

$$\mathcal{O}^{\mathsf{full}}(\phi) = \mathcal{O}^{\mathsf{1L}}(\phi) + \left[\mathcal{O}^{\mathsf{full}}(0) - \mathcal{O}^{\mathsf{1L}}(0)\right] \times \frac{1 + \cos \phi}{2} \\ + \left[\mathcal{O}^{\mathsf{full}}(\pi) - \mathcal{O}^{\mathsf{1L}}(\pi)\right] \times \frac{1 - \cos \phi}{2}$$

3. Numerical results

Investigation of:

- $-M_{SUSY}$ dependence
- $-m_t$ dependence
- phase dependence
- special scenarios
- parameter scan

. . .

Together with other observables:

 M_{h}^{SUSY} determination (similar to Blue Band in the SM)

observable	central exp. value	$\sigma\equiv\sigma^{\rm today}$	$\sigma^{ m LHC}$	$\sigma^{ m ILC/GigaZ}$	
M_W [GeV]	80.398 0.025 0.015		0.015	0.007	
$\sin^2 heta_{ m eff}$	0.23153	0.00016	0.00020-0.00014	0.000013	
Γ_Z [GeV]	2.4952	0.0023		0.001	
R_l	20.767	0.025		0.01	
R_b	0.21629	0.00066		0.00014	
$\sigma_{ m had}^{ m 0}$	41.540	0.037		0.025	

\Rightarrow ILC/GigaZ precision yields a very strong improvement

A) M_{SUSY} and m_t dependence (I)

 \Rightarrow strong M_{SUSY} dependence \Rightarrow important m_t dependence

A) M_{SUSY} and m_t dependence (II)

 \Rightarrow weak M_{SUSY} dependence \Rightarrow weak m_t dependence

A) M_{SUSY} and m_t dependence (III)

 $\Rightarrow \text{ relevant } M_{\text{SUSY}} \text{ dependence only for } \Gamma_Z$ $\Rightarrow \text{ relevant } m_t \text{ dependence only for } \Gamma_Z$

$$\delta M_W^{\text{para},m_t} = 9 \text{ MeV}$$

$$\delta m_t^{\text{exp}} = 1.4 \text{ GeV} \implies \delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} = 4.2 \times 10^{-5}$$

$$\delta \Gamma_Z^{\text{para},m_t} = 0.34 \text{ MeV}$$

$$\delta M_W^{\text{para},\Delta\alpha_{\text{had}}^{(5)}} = 6.3 \text{ MeV}$$

$$\delta (\Delta \alpha_{\text{had}}^{(5)}) = 3.5 \times 10^{-4} \implies \delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta\alpha_{\text{had}}^{(5)}} = 12 \times 10^{-5}$$

$$\delta \Gamma_Z^{\text{para},\Delta\alpha_{\text{had}}^{(5)}} = 0.32 \text{ MeV}$$

 \Rightarrow strong dependence on μ \Rightarrow strong dependence on M_2 for small M_2

C) Dependence on ϕ_{A_t} and ϕ_{A_b} (for $\phi_{\mu} = 0$) (I):

⇒ strong dependence on ϕ_{A_t} ⇒ strong dependence on ϕ_{A_h} for large tan β (→ light sbottom)

C) Dependence on ϕ_{A_t} and ϕ_{A_b} (for $\phi_{\mu} = 0$) (II):

⇒ strong dependence on ϕ_{A_t} ⇒ strong dependence on ϕ_{A_b} for large tan β (→ light sbottom)

C) Dependence on ϕ_{A_t} and ϕ_{A_b} (for $\phi_{\mu} = 0$) (III):

⇒ strong dependence on ϕ_{A_t} ⇒ strong dependence on ϕ_{A_b} for large tan β (→ light sbottom)

D) M_W and $\sin^2 \theta_{\rm eff}$ in Split SUSY:

[N. Arkani–Hamed, S. Dimopoulos '04] [G. Giudice, A. Romanino '04]

 \rightarrow deviations to the SM with $M_H^{SM} = M_h$:

 M_W

 $\sin^2 \theta_{\rm eff}$

 \Rightarrow even with ILC precision hardly any effect visible

\Rightarrow the ILC(1000)/GigaZ could detect SUSY directly/indirectly

F) Parameter scans in the (full) MSSM:

Prediction for M_W in the SM and the MSSM :

MSSM band: scan over SUSY masses

overlap: SM is MSSM-like MSSM is SM-like

 $\frac{\text{SM band:}}{\text{variation of } M_H^{\text{SM}}}$

Prediction for $\sin^2 \theta_{\rm eff}$ in the SM and the MSSM :

Prediction for M_W and $\sin^2 \theta_{\text{eff}}$ in the SM and the MSSM : [S.H., W. Hollik, A.M. Weber, G. Weiglein '07]

Prediction of M_h in the CMSSM/mSUGRA

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

- combine all electroweak precision data as in the SM
- combine with B physics observables
- combine with CDM and $(g-2)_{\mu}$
- include SM parameters with their errors: m_t , ...
- scan over the full CMSSM parameter space $(m_{1/2}, m_0, A_0, \tan\beta)$

Prediction of M_h in the CMSSM/mSUGRA

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

- combine all electroweak precision data as in the SM
- combine with B physics observables
- combine with CDM and $(g-2)_{\mu}$
- include SM parameters with their errors: m_t , ...
- scan over the full CMSSM parameter space $(m_{1/2}, m_0, A_0, \tan \beta)$
- ⇒ preferred CMSSM parameters
- \Rightarrow preferred M_h values
- \Rightarrow LHC/ILC reach

Pull distributions:

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

CMSSM

SM

 \Rightarrow note the new observables: BR $(b \rightarrow s\gamma)$, $(g-2)_{\mu}$, CDM

Pull distributions:

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

CMSSM

SM

				$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$			
	Variable	Measurement	Fit	0 1 2	3 Variable		
	$\Delta \alpha_{had}^{(5)}(m_{Z})$	0.02758 ± 0.00035	0.02774		$\Delta \alpha_{had}^{(5)}(\mathbf{m}_{z})$		
	m _z [GeV]	91.1875 ± 0.0021	91.1873		m _z [GeV]		
	$\Gamma_{\mathbf{Z}}$ [GeV]	2.4952 ± 0.0023	2.4952		Γ _Z [GeV]		
	σ_{had}^0 [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.486		σ _{had} ⁰ [nb]		
	R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744		R ₁		
	$\mathbf{A_{fb}^{0,l}}$	0.01714 ± 0.00095	0.01641		A ^{0,1} _{fb}		
	$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1479		$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$		
	R _b	0.21629 ± 0.00066	0.21613		R _b		
	R _c	0.1721 ± 0.0030	0.1722		R _c		
	$\mathbf{A_{fb}^{0,b}}$	$\textbf{0.0992} \pm \textbf{0.0016}$	0.1037		$\mathbf{A_{fb}^{0,b}}$		
	$\mathbf{A_{fb}^{0,c}}$	$\textbf{0.0707} \pm \textbf{0.0035}$	0.0741		A ^{0,c} _{fb}		
	A _b	$\textbf{0.923} {\pm} \textbf{0.020}$	0.935		A _b		
	A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.668		A _c		
	A _l (SLD)	0.1513 ± 0.0021	0.1479		A _l (SLD)		
	$\sin^2 \theta_{eff}^{lept}(\mathbf{Q}_{fb})$	0.2324 ± 0.0012	0.2314		$\sin^2 \theta_{eff}^{lept} (\mathbf{Q}_{ff})$		
	m _w [GeV]	$\textbf{80.398} \pm \textbf{0.025}$	80.382		m _w [GeV]		
	m _t [GeV]	$\textbf{170.9} \pm \textbf{1.8}$	170.8		m _t [GeV]		
	$\mathbf{R}(\mathbf{b}{ ightarrow}\mathbf{s}\gamma)$	$\textbf{1.13} \pm \textbf{0.12}$	1.12		Γ _w [GeV]		
	$B_s \rightarrow \mu \mu [\times 10^{-8}]$	< 8.00	0.33	N/A (upper limit)			
	$\Delta \mathbf{a}_{\mu} [\times 10^{-9}]$	$\pmb{2.95 \pm 0.87}$	2.95				
	Ωh^2	$\textbf{0.113}{\pm}\textbf{0.009}$	0.113				

			O ^{meas} -O	$ \mathbf{O}^{\text{meas}}-\mathbf{O}^{\text{fit}} /\sigma^{\text{meas}}$		
Variable	Measurement	Fit	0 1	2	3	
$\Delta \alpha_{had}^{(5)}(\mathbf{m}_{Z})$	0.02758 ± 0.00035	0.02768				
m _z [GeV]	91.1875 ± 0.0021	91.1875				
Γ _Z [GeV]	2.4952 ± 0.0023	2.4957				
σ_{had}^0 [nb]	$\textbf{41.540} \pm \textbf{0.037}$	41.477				
R ₁	$\textbf{20.767} \pm \textbf{0.025}$	20.744				
$A_{\rm fb}^{0,1}$	0.01714 ± 0.00095	0.01645				
$\mathbf{A}_{\mathbf{l}}(\mathbf{P}_{\tau})$	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21586				
R _c	0.1721 ± 0.0030	0.1722				
$\mathbf{A_{fb}^{0,b}}$	0.0992 ± 0.0016	0.1038				
$A_{\rm fb}^{0,c}$	0.0707 ± 0.0035	0.0742				
A _b	$\boldsymbol{0.923 \pm 0.020}$	0.935				
A _c	$\boldsymbol{0.670 \pm 0.027}$	0.668				
A _l (SLD)	0.1513 ± 0.0021	0.1481				
$\sin^2 \theta_{\rm eff}^{\rm lept}(\mathbf{Q}_{\rm fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.398 ± 0.025	80.374				
m _t [GeV]	$\textbf{170.9} \pm \textbf{1.8}$	171.3				
Г _w [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091				

Probabilities: 24% / 20%

15% / 15% (incl. / excl. M_h)

Red band plot:

[Buchmüller, Cavanaugh, de Roeck, S.H., Isidori, Paradisi, Ronga, Weber, Weiglein '07]

 $M_h = 110^{+8}_{-10} \,(\text{exp}) \pm 3 (\text{theo}) \,\,\text{GeV}$

Blue/Red band plot:

CMSSM (despite its simplicity) is better than the SM

4. Conclusinos

- Precision observables
 - can give valuable information about the "true" Lagrangian
 - can provide bounds on SUSY parameter space
- <u>SM</u>: Blue band plot: $\Rightarrow M_H^{SM} = 87_{-27}^{+36}$ GeV (too light for LEP bounds?)
- electroweak precision observables (EWPO): $\mathcal{O} = M_W$, $\sin^2 \theta_{\text{eff}} (A_{\text{FB}}^{b,c}, A_{\text{LR}}^{e,\mu})$, R_l , R_b , σ_0^{had} , ...
- best MSSM prediction = full (available) SM result

 + all existing MSSM corrections
 e.g. full 1L incl. complex phases
 double counting
- SUSY dependencies:
 - strong dependence only for M_W , $\sin^2 \theta_{\rm eff}$, Γ_Z
 - strong dependence on $M_{\rm SUSY}$, μ , $M_{\rm 2}$, m_t , . . .
 - strong dependence on ϕ_{A_t}
 - strong dependence on ϕ_{A_b} for large tan β
- <u>CMSSM/mSUGRA</u>: Red band plot: $\Rightarrow M_h^{\text{CMSSM}} = 110 \pm 8 \pm 3 \text{ GeV}$

Back-up

Can EWPO close the CPX holes?

 \Rightarrow No! EWPO do not have a strong impact on CPX holes CPX holes: ZZh_1 coupling small \Rightarrow small change in EWPO

Remaining theoretical (intrinsic) uncertainties of M_W :

[J. Haestier, S.H., D. Stöckinger, G. Weiglein '05]

[S.H., W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein '06]

Estimate missing SUSY corrections order by order:

- $\mathcal{O}\left(\alpha_t^2, \alpha_t \alpha_b, \alpha_b^2\right)$: beyond existing leading contributions
- $\mathcal{O}(\alpha \alpha_s)$: beyond $\Delta \rho$ approx.
- $\mathcal{O}\left(\alpha\alpha_s^2\right)$
- $\mathcal{O}\left(\alpha^2 \alpha_s\right)$
- $\mathcal{O}\left(\alpha^{3}\right)$
- missing phase dependence at two-loop
- \Rightarrow evaluate for $M_{SUSY} = 300, 500, 1000 \text{ GeV}$

Combine with SM uncertainty: $\delta M_W^{SM,intr.} = 4 \text{ MeV}$

$$\delta M_W^{\rm SUSY,intr.} = 5 - 11 {
m MeV}$$

(depending on M_{SUSY})