# **ILD Vertex Detector for the Lol**

Marc Winter (IPHC/Strasbourg)



• Reminder on (conflicting) requirements :

 $\Rightarrow$  Physics goals  $\Rightarrow$  Running conditions

- Vertex Detector geometries for the LoI :
  - $\Rightarrow$  5 layer geometry  $\Rightarrow$  3 layer-pairs geometry
- Questions addressed by Lol studies

⇔ Detector geometry

 ⇒ Sensor performances

• Summary

ILD-VD

Aim for several very ambitious (realistic ?) goals :

♦ excellent impact parameter resolution
♦ distinguish impacts from close tracks (inside jets)

 $\diamond$  reconstruct soft tracks  $\diamond$  minimal m.s.  $\mapsto$  pattern confusions,  $\Delta p/p$ , part. flow, jet flavour content (e<sup>-</sup> vs  $\nu_e$ ), ...

| Constraints mainly driven by $\sigma_{\pm}$ – a $\oplus$ b/n sin <sup>3/2</sup> $\theta$ | Accelerator | <b>a (</b> μm <b>)</b> | b ( $\mu m \cdot GeV$ ) |
|------------------------------------------------------------------------------------------|-------------|------------------------|-------------------------|
| small $a \mapsto bigh granularity (pixels) and small R_{in}$                             | LEP         | 25                     | 70                      |
| small $b \mapsto small R_{in}$ ( $b \sim R_{in}$ )                                       | SLD         | 8                      | 33                      |
| reduced mat, budget (b $\sim (X/X_0)^{1/2}$ ) $\mapsto$ low Pdice                        | LHC         | 12                     | 70                      |
|                                                                                          | RHIC-II     | 13                     | 19                      |
|                                                                                          |             | < 5                    | < 10                    |

Accommodate running conditions (e.g. event pile-up, background from  $e_{BS}^{\pm}$ , photon gas ?, etc.)

 $\diamond$  occupancy  $\mapsto$  high r.o. speed (or extreme granularity)  $\mapsto$  power dissipation

 $\diamond$  irradiation  $\mapsto$  radiation tolerant detectors

Accommodate requirements from other sub-detectors :

 $\diamond$  ex : relatively low B for PFA optimisation  $\Rightarrow$  occupancy in VXD  $\nearrow$ 

Accommodate optimise VXD design consistently with neighbouring tracking sub-detectors (SIT, low angle)

\_

### Aim: ultra-light, very granular, poly-layer, swift, low power and rad. tol. Vertex Detector installed very close to the interaction point

 $\hookrightarrow$  Aim of the studies driven by the LoI : find an optimal balance between

Granularity,

Material budget,

Radiation tolerance,

Speed

and Power dissipation

(cost not expected to be a major issue)

#### **Complications:**

→ Several different detection technologies under development,

→ Several read-out architectures under development

 $\mapsto$  Final performances achievable with each variant not yet assessed

 $\Rightarrow$  Trade-off is technology dependent  $\mapsto$  convergence within a few years (EDR ) is a challenge

**14 mrad crossing angle**  $\rightarrow$  **background simulation with Guinea-Pig** from K.Buesser (22.01.2008)

BG hit density in each layer being updated :

- $\Rightarrow$  moderate z dependence : maximal in inner layer (15–20 %)
- $\Rightarrow$  substantial  $\phi$  dependence suspected (factor > 2)

↔ varying B by  $\pm$  0.5 T changes hit rate by  $\sim$  20–30 %  $\longrightarrow$  $\longrightarrow$  much less than uncertainty on hit rate itself

Concern for polar angle coverage :

← cloud of defocussed  $e_{BS}^{\pm}$  may hit ladder ends
 ← corner position in *z* vs B and R reevaluated  $\longrightarrow$ 

 $\Rightarrow$  confirms  $\pm$  previous estimates :  $z_C \simeq 8.3 \cdot R^2 \cdot B \cdot \sigma_z \cdot 10^{10} / N$ 

- ▷ ▷ ▷ For  $R \ge 15 \text{ mm}$ : ladder half-length  $\lesssim 8$ –9 cm free from defocussed cloud, even for B = 3 T
- Direct & backscattered photons not yet (well) studied





Maintain 2 alternative long-barrel approaches :





Two read-out modes considered :

⇔ continuous read-out

⇒ read-out delayed after bunch-train 

→ 3 double layers expected to help

 $\Rightarrow$  mini-vectors

### **5 Layer Geometry : VXD03**

- 5 layers intercepting angles down to  $\|\cos \theta\| \simeq$  0.97 :
- Layer radii : 15, 26, 37, 48, 60 mm
- Nb of ladders per layer : 10 (in) / 11 / 12 / 16 / 20 (out)
- Ladder lengths : 125 mm (inner), 250 mm (outer)
- Ladder support structure : carbon fiber (100  $\mu m$  thick)
- Ladder sensitive part width on each layer :
  - inner : 11 mm second : 15 mm outer : 22 mm
  - 50  $\mu m$  thick silicon
- Electronics at ladder end :
  - 10 mm long
  - 100  $\mu m$  thick silicon
- Insensitive ladder edge :
  - 1.5 mm wide
  - 50  $\mu m$  thick silicon
  - can be activated



- **3** pairs of layers intercepting angles down to  $\|\cos \theta\| \simeq$  0.97 :
- Double-layer radii (inner/outer) : 16/18, 37/39, 58/60 mm
- Nb of ladders per layer : 10 (in) / 12 / 20 (out)
- Ladder lengths : 125 mm (inner), 250 mm (outer)
- Ladder support structure : carbon fiber (100  $\mu m$  thick)
- Ladder sensitive part width on each layer :
  - inner : 11 mm outer : 22 mm
  - 50  $\mu m$  thick silicon
- Electronics at ladder end :
  - 10 mm long
  - 100  $\mu m$  thick silicon
- Insensitive ladder edge :
  - 0.5 mm wide
  - 50  $\mu m$  thick silicon
  - can be activated



Ladder geometry  $\rightarrow$  accommodate simultaneously different sensor technologies :

• Steering and r.o. electronics foreseen along the edges and at the ladder ends



Will be studied extensively by VD groups working on diff. sensor technologies

# Ladder Support

**"Realistic" ladder fixture on "gasket"**  $\rightarrow$  **combine with beam pipe geometry study** 



**Gasket**" : 0.74 % X<sub>0</sub> in barrel

- Mechanical support (Be) :
  - $R = 75 \, mm$
  - thickness  $\simeq$  500  $\mu m$  : 0.14 % X $_0$
- Cryostat :
  - R = 90/100 mm
  - styropor (10 mm) : 0.05 % X<sub>0</sub>
  - Al skin (0.5 mm) : 0.55 % X<sub>0</sub>

Neighbouring trackers :

- Barrel :
  - 2 layers of Si strips (R = 160 & 270 mm
- End-caps (provisionnal) :
  - 3 disks of hybrid pixels
  - 4 disks of Si strips



### **Objectives of the Study : Optimal Detector Geometry**

Studies based on central massive production of signal and background events with baseline geometry  $\rightarrow$  outcome will be used by VD groups for refined studies

Vary basic parameters :

- innermost layer radius : 14 mm  $\lesssim~$  R $_{in}~$   $\lesssim$  20 mm
- ladder material budget : 0.1 % X $_0 \lesssim t \lesssim$  0.2 % X $_0$
- magnetic field strength :  $3 T \le B \le 4 T$

**Specific questions :** 

- optimal pixel pitch and read-out time for each layer
- mini-vector efficiency for BG rejection (layer-pair geometry)
- optimal number of ladders per layer, etc.
- *influence of electronics on ladder edge and ends (mat. budget)*
- influence of SIT : track matching  $\rightarrow$  time stamping , low P reconstruction, ...
- track matching (& time stamping ) with fw/bw trackers  $\rightarrow$  how long should the barrel be ?
- for which fw/bw material budget does a geometry based on short barrel + end-cap disks start to be more attractive than long barrel ?

### SUMMARY

- ILD baseline geometry :
  - ightarrow vertex detector made of long cylinders (down to  $\|\cos \theta\| \simeq$  0.97)
  - $\Rightarrow$  B = 3.5 T (intermediate between GLD and LDC fields)

Two alternative geometries studied (inheritated from GLD & LDC) :

- $\simeq$  VXD-04 : 3 double layers (R = 16 60 mm)
  - $\Rightarrow$  continuous and delayed read-out

Emphasis on low material budget :

- ightarrow all layers  $\simeq 0.48 0.54 \% X_0$
- $\simeq$  Be mecha. support, surrounded by cryostat (styropor) & field cage (AI)  $\rightarrow \Sigma$  = 0.74 % X<sub>0</sub>
- ▷▷ Alternative geometry to study : short barrel with end-cap disks

Difficulty: VXD optimisation needs to be organised in  $\geq$  2 parallel ways

- ← combined VXD optimisation accounting for (evolving ) neighbouring sub-detector parameters

Effect of 14 mrad crossing angle on hit uniformity (B = 3.5 T - R = 15 mm)

#### head-on collisions

#### 14 mrad Xing angle



**Distributions in**  $\phi$  and  $z \Rightarrow no$  significant change between head-on & 14 mrad Xing angle distributions

**Concern for polar angle coverage** : *cloud of defocussed*  $e_{BS}^{\pm}$  *may hit ladder ends* 

Spatial distribution of defocussed  $e_{BS}^{\pm}$  studied with GuineaPig (vertical scales are arbitrary)



 $\Rightarrow$  Use the corner between direct and defocussed  $e_{BS}^{\pm}$  to determine ladder lengths  $\rightarrow$  angular coverage

## Beamstrahlung Background Characteristics

Corner position in *z* vs B and R :

Continuous lines :  $z_C \simeq 8.3 \cdot R^2 \cdot B \cdot \sigma_z \cdot 10^{10} / N$ 

M.Battaglia, V.Telnov, Proc. 2nd Workshop on backgrounds at MDI, World Sci., 1998

Dots : GuineaPig simulation



 $\triangleright \triangleright \triangleright$  GuineaPig simulation confirm empirical expression of  $z_C$ 

▷ ▷ ▷ For R ≥ 15 mm : ladder half-length  $\lesssim$  8 cm free from defocussed cloud even for B = 3 T

Required radiation tolerance because of beamstrahlung electrons :

$$5 e^{\pm}_{BS}$$
 /cm<sup>2</sup> /BX  $\rightarrowtail$  6·10<sup>11</sup>  $e^{\pm}_{BS}$  /cm<sup>2</sup> /yr  $\rightarrowtail$  safety factor ( $\gtrsim$  3 ) : 2·10<sup>12</sup>  $e^{\pm}_{BS}$  /cm<sup>2</sup> /yr

lonising radiation :

⇒ 6.10<sup>11</sup> e<sup>±</sup><sub>BS</sub> /cm<sup>2</sup> /yr → ~ 20 kRad/yr → ~ 50 kRad/yr (inclined e<sup>±</sup><sub>BS</sub> trajectories)
⇒ safety factor (~ 3) → ~ 150 kRad/yr
⇒ in 3 yrs : 150–500 kRad

Non-lonising radiation :

 $\Rightarrow e_{BS}^{\pm} (10 \text{ MeV}) : \text{NIEL factor} \sim 1/30$  $\Rightarrow 6 \cdot 10^{11} e_{BS}^{\pm} / \text{cm}^2 / \text{yr} \simeq 2 \cdot 10^{10} n_{eq} / \text{cm}^2 / \text{yr} \rightarrow \text{safety factor} (\sim 3) \simeq 6 \cdot 10^{10} n_{eq} / \text{cm}^2 / \text{yr}$  $\Rightarrow \text{in 3 yrs} : 2 \cdot 10^{11} n_{eq} / \text{cm}^2 \text{ (much more than neutron gas ...)}$ 

Still to be studied : Photons

Read-out architecture : continuous vs delayed r.o.

### Continuous read-out :

- Several draw-backs : data throughput, power dissipation, EMI risk, etc.
- 5 hits /cm<sup>2</sup> /BX  $\Rightarrow$  0.3 % hit occupancy in 50  $\mu s$  (20  $\mu m$  pitch)
  - $\Rightarrow \leq$  1 % pixel occupancy (3 seed pixels /hit due to inclined tracks)
- in case of 15 hits /cm<sup>2</sup> /BX  $\Rightarrow$  several % pixel occupancy

 $\Rightarrow$  read-out may be too long  $\Rightarrow$  risk alleviated with fast read-out in 2nd layer

### **Delayed read-out :**

• how small should the pixel be ?

| pitch      | (3 ; 3) | (3 ; 6) | (15 ; 3) | (15 ; 6) |
|------------|---------|---------|----------|----------|
| 20 $\mu m$ | 0.48 %  | 1.80 %  | 9.25 %   | 27.4 %   |
| 18 $\mu m$ | 0.32 %  | 1.21 %  | 6.46 %   | 19.9 %   |
| 16 $\mu m$ | 0.20 %  | 0.77 %  | 4.26 %   | 13.9 %   |
| 14 $\mu m$ | 0.12 %  | 0.46 %  | 2.63 %   | 8.94 %   |
| 12 $\mu m$ | 0.07 %  | 0.25 %  | 1.48 %   | 5.25 %   |
| 10 $\mu m$ | 0.03 %  | 0.12 %  | 0.74 %   | 2.72 %   |
| 8 $\mu m$  | -       | 0.05 %  | 0.31 %   | 1.18 %   |
| 6 $\mu m$  | -       | 0.02 %  | 0.10 %   | 0.39 %   |
| 4 $\mu m$  | -       | -       | 0.03 %   | 0.08 %   |

Prob ( $\geq$  2 hits/pixel) for 3/15 hits/cm<sup>2</sup>/BX & 3/6 pixels/hit

#### Upper limit M on double hit /pixel $\rightarrow$ pixel pitch

| limit M | (3; 3)       | (3; 6)             | (15; 3)            | (15; 6)       |
|---------|--------------|--------------------|--------------------|---------------|
| 0.3 %   | 17.7 $\mu m$ | 12.5 $\mu m$       | 7.9 $\mu m$        | 5.6µm         |
| 0.1 %   | 13.5 $\mu m$ | <b>9.5</b> $\mu m$ | 6.0µm              | 4.2 $\mu m$   |
| 0.03 %  | 10.0µm       | 7.0µm              | <b>4.5</b> $\mu m$ | <b>3</b> .1µm |

< 10  $\mu m$  pitch mandatory !  $\Rightarrow$