

What about HHZ when m(H) = 170 GeV?

Pierre Lutz IRFU (Saclay)

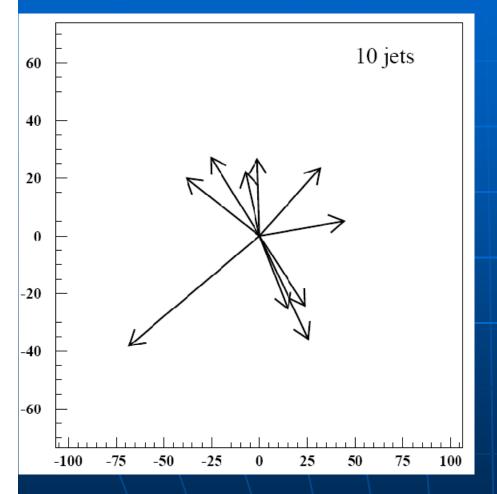
Introduction

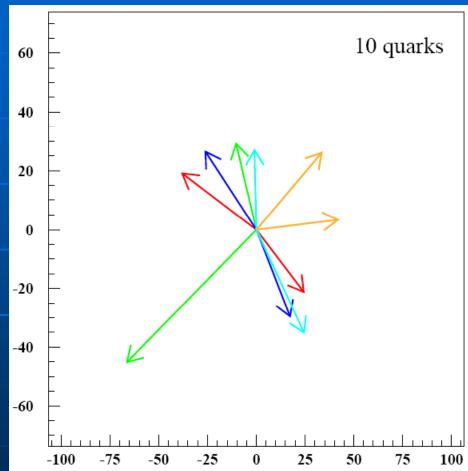
- Since long, we have been asked to look for triple Higgs coupling in the case of a heavy Higgs (H -> WW)
- It means that a HHZ event is a 5 boson event, or a 10 fermion event!
- Many challenges:
- 1. Cross-section very small
- 2. Many possible final states
- 3. Combinatorics!

Why 170 GeV?

- Because the BR into WW is maximal: we observed ~2.5% of events with one H decaying into bb or gg.
- Because we can study it at 500 GeV since 90 + 2x170 = 430, despite a tiny cross-section (~40 ab).

11/06/2008 P. Lutz ECFA 2008 Varsovie 3


First step: going from 10 jets to Z4W


■ In Valencia, I showed it is possible, at generation level, to find a comb. of 5 di-jets compatible with a Z4W event within the 4725 ways to form 5 di-jets out of 10 jets.

■ The efficiency was not so bad, around 47% for pure hadronic decays of the 5 bosons.

11/06/2008 P. Lutz ECFA 2008 Varsovie

Differences, but not so big!

11/06/2008

P. Lutz

ECFA 2008 Varsovie

5

2nd step: a bit more ambitious

- Still at generation level!
- I used the SLAC files prepared by Tim in order to perform a preliminary feasibility analysis (removing events with a Higgs boson)
- Strategy:
 - 1/ Determine the number of prompt leptons.
 - 2/ Preselection based on multiplicities and shape variables
 - 3/ Clusterization and combinatorics (already demonstrated)
 - 4/ Study of remaining background

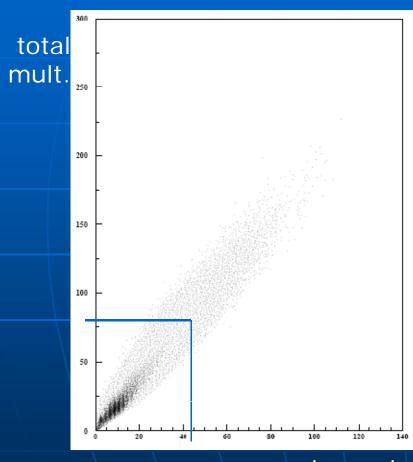
The various channels (1)

Z	4W	Br(%)	Nlept.	Yes/no	Njets
Hadr.	All h.	14.6	0	yes	10
Hadr.	1W e/μ	18.7	1	yes	8
Hadr.	1W tau I.	3.4	1	yes	8
Hadr.	1W tau h.	5.9	0	yes	9
Hadr.	2W e/µ	8.9	2	yes	6
Hadr.	others	18.4	var.	NO	
Invisible	All h.	4.2	0	yes	8
Invisible	1W e/μ	5.3	1	yes	6
Invisible	1W tau	2.7	0 or 1	?	7 or 6
Invisible	others	7.8	var.	NO	

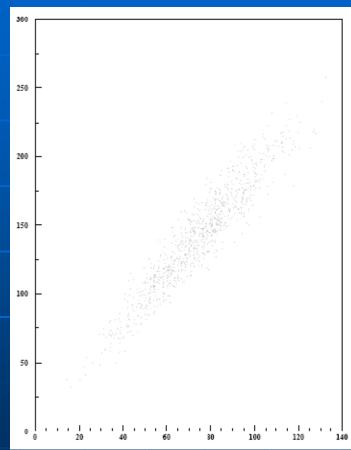
11/06/2008

The various channels (2)

Z	4W	Br(%)	Nlept.	Yes/no	Njets
e+e-/μμ	All had.	1.4	2	yes	8
e+e-/µµ	1W e/μ	1.8	3	yes	6
e+e-/µµ	1W tau	0.9	2 or 3	?	7 or 6
e+e-/µµ	2W e/µ	0.9	4	yes ?	4
e+e-/µµ	others	1.8	var.	NO	
tautau	All had.	0.7	var.	?	10,9 or 8
tautau	1W e/μ	0.9	var.	?	8,7 or 6
tautau	others	1.8	var.	NO	

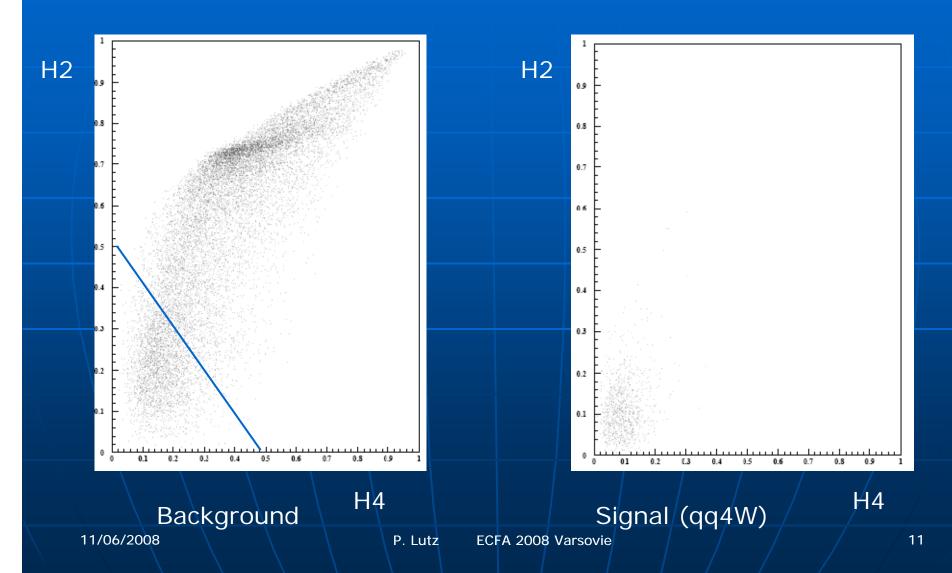

Only 65% can be used (too many missing neutrinos otherwise)
Many different analyses necessary, based on Nlept

8


Exemple of strategy (Nlep = 1)

- First hypo.: 3 W had. + 1 W lep.
 Thus try 8 jets + (W = lep. + mis4m)
- If OK, go on!
- If not (means lepton + mis4mom does not match a W), look for mult. min among the jets. If « small », can be a hadronic t!
- Second hypo: 2Whad, 1W lep., 1Wtau, means 7 jets for the hadronic system.

Preselection (multiplicities)


Background

charged mult.

Signal (qqbar4W) Cl

charged mult.

Preselection (shape variables)

Background content at Z4W level

- The remaining background is dominated by ttbar events.
- Depending on the beam polarisations ttbar events make 84 to 89%,

other events with bb: 4%,

events without b: 12 to 7%.

(most of them are « 2fermion » like ugggssbargubar !!)

Thus, a b-tagging can help!!

Results (efficiencies)

Polarisation	e ⁻ : -80%	e+: 30%	e ⁻ : 80% e ⁺ : -30%		
	Background	Signal	Background	Signal	
	(rej. factor)	(eff.)			
Preselection	2155	94.2%	5128	95.3%	
Z4W comp.	31250	46.3%	58820	44.2%	
ZHH comp.	42200	36.4%	80000	31.7%	
Ymin >5	75750	36.3%	158000	31.7%	
$M_{bb} = M_Z$	500000	36.0%	833333	31.3%	
for 500 fb ⁻¹					

Background: without H + X (yet)

Signal: qqHH only

Results (efficiencies)

Polarisation	e ⁻ : -80%	e+: 30%	e ⁻ : 80% e ⁺ : -30%		
	Background	Signal	Background	Signal	
Preselection	2155	94.2%	5128	95.3%	
Z4W comp.	31250	46.3%	58820	44.2%	
ZHH comp.	42200	36.4%	80000	31.7%	
Ymin >5	75750	36.3%	158000	31.7%	
$M_{bb} = M_{Z}$	500000	36.0%	833333	31.3%	
for 500 fb ⁻¹	1920	4.2	1120	2.5	

NOT DESPERATE, but far from the end of the story !!!

Conclusion (to do list)

- Add background with H, and study also signals vvHH and I+I-HH
- Optimize all steps of all analyses
- Suppress cheated steps (btag as ex.)
- We have to gain a rej. factor of 1000
- Help welcome!