Requirements for Jet Energy Resolution

Tim Barklow

SLAC

June 10, 2008

OUTLINE

- Describe a new FastMC tune designed to mimic global behavior of PandoraPFA
- In order to better understand required jet energy resolution, use this FastMC to investigate various contributions to dijet mass resolution
- Revisit some studies of physics error vs jet energy resolution

Use the following single particle calorimeter resolutions in FASTMC to mimick PFA jet energy resolution versus jet energy for jet energies $50 \mathrm{GeV}<\mathrm{E}_{\text {jet }}<250 \mathrm{GeV}$

$\alpha \equiv \frac{\Delta \mathrm{E}_{\text {jet }}}{\sqrt{\mathrm{E}_{\text {jet }}}} \quad \alpha_{90} \equiv \frac{\left(\Delta \mathrm{E}_{\text {jet }}\right)_{90}}{\sqrt{\mathrm{E}_{\mathrm{jet}}}}$

Behavior of New

FastMC Tune
$\frac{\Delta \mathrm{E}_{\gamma}}{\mathrm{E}_{\gamma}}=\frac{0.18}{\sqrt{\mathrm{E}_{\gamma}}}$
$\frac{\Delta \mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{K}_{\mathrm{L}}^{0}}}{\mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{K}_{\mathrm{L}}^{0}}}=0.10$
Tracker used for
$\frac{\Delta \mathrm{E}_{\gamma}}{\mathrm{E}_{\gamma}}=\frac{0.18}{\sqrt{\mathrm{E}_{\gamma}}}$
$\frac{\Delta \mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{K}_{\mathrm{L}}^{0}}}{\mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{K}_{\mathrm{L}}^{0}}}=$
Tracker used for
π^{+}, K^{+}, p angles.
where $\left(\Delta \mathrm{E}_{\text {jet }}\right)_{90}$ is rms of central 90% core

$\mathrm{E}_{\text {jet }}(\mathrm{GeV})$	α_{90}	$\frac{\left(\Delta \mathrm{E}_{\text {jet }}\right)_{90}}{\mathrm{E}_{\text {jet }}}$	$\frac{\alpha_{90}}{\alpha}$
10	.14	.046	.75
30	.22	.040	.82
50	.23	.033	.68
102	.32	.031	.68
175	.47	.035	.76
250	.55	.035	.74

Light quark jets ee $\rightarrow \mathrm{qq}$

- PandoraPFA v02-01
- FASTMC with

$$
\frac{\Delta \mathrm{E}_{\gamma}}{\mathrm{E}_{\gamma}}=\frac{0.18}{\sqrt{\mathrm{E}_{\gamma}}} \quad \frac{\Delta \mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{~K}_{\mathrm{L}}^{0}}}{\mathrm{E}_{\pi^{+}, \mathrm{K}^{+}, \mathrm{p}, \mathrm{n}, \mathrm{~K}_{\mathrm{L}}^{0}}}=0.10
$$

Simple study of $\Delta \mathrm{M}_{\mathrm{W}, \mathrm{Z}}$ versus $\mathrm{E}_{\mathrm{W}, \mathrm{Z}} \& \Delta \mathrm{E}_{\text {jet }}$ using FASTMC

$$
\begin{array}{cc}
e^{-} \gamma \rightarrow v_{e} W^{-} & \rightarrow v_{e} \bar{u} d \\
v_{e} H \rightarrow v_{e} Z & \rightarrow v_{e} u \bar{u}
\end{array}
$$

Don't include loss of resolution from:
Neutrinos
Particles outside fid. vol.
Particles below tracker/calorimeter energy thresholds
Imperfect V0 finding

Error bars correspond to FastMC full rms for $\mathrm{m}_{\text {rec }}-\mathrm{m}_{\text {true }}$ where $\mathrm{m}_{\text {true }}$ has a Breit-Wigner distribution.

Neutrinos and particles outside FastMC detector volume or below FastMC energy thresholds are not included in $\mathrm{m}_{\text {true }}$.

$$
\begin{aligned}
& M_{W, Z} \\
& (G e V)
\end{aligned}
$$

The approximate expression for the two-jet mass M is

$$
\begin{aligned}
& M \approx 2 E_{1} E_{2}(1-\cos \theta) \\
& \frac{\Delta M}{M} \approx \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right]
\end{aligned}
$$

but the full expression is

$$
\begin{aligned}
& M=m_{1}^{2}+m_{2}^{2}+2 E_{1} E_{2}\left(1-\beta_{1} \beta_{2} \cos \theta\right) \quad, \quad \beta_{j}=\left(1-\frac{m_{j}^{2}}{E_{j}^{2}}\right)^{\frac{1}{2}} \\
& \frac{\Delta M}{M} \approx \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}} \oplus \frac{\theta \sin \theta}{1-\cos \theta} \frac{\Delta \theta}{\theta} \oplus \frac{1+r^{-1} \cos \theta}{1-\cos \theta} \frac{m_{1}^{2}}{E_{1} E_{2}} \frac{\Delta m_{1}}{m_{1}} \oplus \frac{1+r \cos \theta}{1-\cos \theta} \frac{m_{2}^{2}}{E_{1} E_{2}} \frac{\Delta m_{2}}{m_{2}}\right] \\
& r=\frac{E_{1}}{E_{2}}
\end{aligned}
$$

How important are the $\frac{\Delta \theta}{\theta}, \frac{\Delta m_{1}}{m_{1}}, \frac{\Delta m_{2}}{m_{2}}$ terms?

At least in the FASTMC,

$$
v_{e} H \rightarrow v_{e} Z \rightarrow v_{e} u \bar{u}
$$ the $\frac{\Delta \theta}{\theta}, \frac{\Delta m_{1}}{m_{1}}, \frac{\Delta m_{2}}{m_{2}}$ terms are not important.

Force event into 4 jets.
Form dijet pairs and select pair that minizes

$$
\sum \frac{\left(m_{i j}-M_{W}\right)^{2}}{\sigma_{W}^{2}}+\frac{\left(m_{k l}-M_{Z}\right)^{2}}{\sigma_{Z}^{2}}
$$

$$
\Delta M_{Z}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{Z}
$$

$$
M_{W, Z}
$$

$$
\Delta M_{W}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{W}
$$

$$
e^{-} \gamma \rightarrow v_{e} W^{-} Z \rightarrow v_{e} \bar{u} d u \bar{u}
$$

Back to back W Z $\rightarrow 4$ jets ($\theta_{\mathrm{wZ}}=\pi$) no gluon radiation

Force event into 4 jets.

Form dijet pairs and select
pair that minizes

$$
\sum \frac{\left(m_{i j}-M_{W}\right)^{2}}{\sigma_{W}^{2}}+\frac{\left(m_{k l}-M_{Z}\right)^{2}}{\sigma_{Z}^{2}}
$$

$$
\Delta M_{Z}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{Z}
$$

$$
M_{W, Z}
$$

$$
\Delta M_{W}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{W}
$$

$$
e^{-} \gamma \rightarrow v_{e} W^{-} Z \rightarrow v_{e} \bar{u} d u \bar{u}
$$

Collinear W Z $\rightarrow 4$ jets ($\theta_{\mathrm{WZ}}=0$) no gluon radiation

Force event into 4 jets.

$$
e^{-} \gamma \rightarrow v_{e} W^{-} Z \rightarrow v_{e} \bar{u} d u \bar{u}
$$

Form dijet pairs and select pair that minizes

$$
\sum \frac{\left(m_{i j}-M_{W}\right)^{2}}{\sigma_{W}^{2}}+\frac{\left(m_{k l}-M_{Z}\right)^{2}}{\sigma_{Z}^{2}}
$$

$$
\Delta M_{Z}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{Z}
$$

$$
M_{W, Z}
$$

$$
\Delta M_{W}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right]^{N, \iota}
$$

Back to back $\mathrm{WZ} \rightarrow 4$ jets ($\theta_{\mathrm{wZ}}=\pi$) yes gluon radiation

$e^{-} \gamma \rightarrow \nu_{e} W^{-}$

$$
\frac{\left(\Delta \mathrm{E}_{\text {jet }}\right)_{90}}{\mathrm{E}_{\text {jet }}} \approx 0.033
$$

$\mathrm{E}_{\mathrm{w}}=150 \mathrm{GeV}$

Gluon radiation creates
a long tail but core width is more or less maintained
$e^{-} \gamma \rightarrow v_{e} W^{-} Z \quad \theta_{w Z}=\pi$ no gluons
$e^{-} \gamma \rightarrow v_{e} W^{-} Z \quad \theta_{W Z}=\pi \quad$ yes gluons

We have been assuming perfect V0 finding in the plots shown so far. Now go to the opposite extreme and completely turn off V0 finding.

$$
\begin{gathered}
\left.\Delta M_{Z}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{Z}\right\} \\
M_{W, Z} \\
\left.\Delta M_{W}= \pm \frac{1}{2}\left[\frac{\Delta E_{1}}{E_{1}} \oplus \frac{\Delta E_{2}}{E_{2}}\right] M_{W}\right]
\end{gathered}
$$

$$
\begin{aligned}
& v_{e} H \rightarrow v_{e} Z \rightarrow v_{e} u \bar{u} \\
& e^{-} \gamma \rightarrow v_{e} W^{-} \rightarrow v_{e} \bar{u} d
\end{aligned}
$$

Table of W,Z Mass Resolution Effects All entries are full rms in GeV

Source of
Error

PFA Jet Energy
Jet Angle/Mass
Jet Finding, $\theta_{\mathrm{wZ}}=$
Jet Finding, $\theta_{\mathrm{wz}}=$
Gluon Rad.
Intrinsic Width
No V0 Finding
1.2
1.1
2.8
3.5

Error on $B R\left(H \rightarrow W W^{*}\right)$ from measurement of
$e^{+} e^{-} \rightarrow \mathrm{ZH} \rightarrow q \bar{q} W W^{*} \rightarrow q \bar{q} q \bar{q} l v$ at $\sqrt{s}=360 \mathrm{GeV}, \mathrm{L}=500 \mathrm{fb}^{-1}$
J.-C. Brient, LC-PHSM-2004-001
$\Delta \mathrm{E} / \sqrt{\mathrm{E}}=60 \% \rightarrow 30 \%$ equiv to $1.4 \times$ Lumi

$\square \begin{aligned} & M_{\tilde{\chi}_{t}^{+}}=198.4 \mathrm{GeV} \\ & M_{\tilde{\chi}_{1}^{+}}=200.4 \mathrm{GeV}\end{aligned}$
Force event into 4 jets.
Form dijet pairs and select
pair that minizes

$$
\sum \frac{\left(m_{i j}-M_{W}\right)^{2}}{\sigma_{W}^{2}}+\frac{\left(m_{k l}-M_{W}\right)^{2}}{\sigma_{W}^{2}}
$$

$e^{+} e^{-} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} W^{+} W^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} q q q q$

$\Delta \mathrm{E} / \sqrt{\mathrm{E}}=60 \% \rightarrow 30 \%$ equiv to $1.4 \times$ Lumi

The full rms α was used in plotting physics error vs jet energy resolution for the last two analyses (and probably the first one too).

The eff. luminosity gain in going from $0.6 / \sqrt{\mathrm{E}}$ to $0.3 / \sqrt{\mathrm{E}}$ changes when one uses α_{90} as the jet energy resolution variable:
Eff. Lumi Gain $=\left(\frac{\sigma_{.6}}{\sigma_{.3}}\right)^{2}\left[\frac{1+\left(2 \frac{\sigma_{.3}}{\sigma_{.6}}-1\right)\left(\frac{\alpha_{90}}{\alpha}-1\right)}{1+\left(2-\frac{\sigma_{.6}}{\sigma_{.3}}\right)\left(\frac{\alpha_{90}}{\alpha}-1\right)}\right]^{2}$
where $\sigma_{.3}$ and $\sigma_{.6}$ are the physics errors for $\alpha=$. 3 and . 6 resp.
Assuming $\frac{\sigma_{.6}}{\sigma_{.3}}=1.2$
eff lumi gain $=1.4$ (1.6) (1.9) for $\frac{\alpha_{90}}{\alpha}=1.00$ (0.68)(0.43)

$$
e^{+} e^{-} \rightarrow u \bar{u}
$$

$$
\cdots \frac{\Delta E_{j e t}}{E_{j e t}} \approx \text { PFA Current Status }
$$

True Jet Energy Distribution for $e^{+} e^{-} \rightarrow \mathrm{ZHH} \rightarrow q \bar{q} b \bar{b} b \bar{b}$ at $\sqrt{s}=500 \mathrm{GeV}$

$$
\begin{aligned}
& \cdots \quad \frac{\Delta E_{\text {jet }}}{E_{\text {jet }}}=\frac{0.6}{\sqrt{E_{\text {jet }}}} \\
& \cdots \quad \frac{\Delta E_{j e t}}{E_{j e t}}=\frac{0.4}{\sqrt{E_{j e t}}} \\
& \longrightarrow \quad \frac{\Delta E_{\text {jet }}}{E_{\text {jet }}}=\frac{0.3}{\sqrt{E_{\text {jet }}}}
\end{aligned}
$$

$$
e^{+} e^{-} \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} W^{+} W^{-} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} q q q q
$$

$$
\begin{aligned}
& M_{\tilde{\chi}_{1}^{*}}=200.0 \mathrm{GeV} \\
& M_{\tilde{x}_{1}^{0}}=106.2 \mathrm{GeV} \\
& \sqrt{s}=500 \mathrm{GeV} \\
& L=500 \mathrm{fb}^{-1}
\end{aligned}
$$

$\left(\frac{\Delta \mathrm{E}_{\text {jet }}}{\mathrm{E}_{\text {jet }}}\right)_{90}=.06 \rightarrow .03$ equiv to $2.1 \times$ Lumi New org.lcsim FastMC described on pp 2-5 was used.

$$
e^{+} e^{-} \rightarrow \text { ZHH } \rightarrow q \bar{q} b \bar{b} b \bar{b}
$$

ZHH events My btag NN

ZHH events LCFI btag NN much improved performance but 5s $/ \mathrm{ev}^{*}$

*Recently improved to $0.6 \mathrm{~s} / \mathrm{ev}$ thanks to Ben Jeffery
charm mis-id efficiency versus b-tag efficiency

New org.lcsim FastMC described on pp 2-5
was used for black points

Old org.lcsim FastMC with $\alpha / \sqrt{\mathrm{E}}$ jet energy dependence used for red and blue points

$$
\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{~b} \overline{\mathrm{~b}})=0.678
$$

$$
e^{+} e^{-} \rightarrow \mathrm{ZHH}
$$

$$
\rightarrow q q b \bar{b} b \bar{b}
$$

$$
\sqrt{s}=500 \mathrm{GeV}
$$

$$
L=2000 \mathrm{fb}^{-1}
$$

$\Delta \mathrm{E}_{\text {jet }} / \mathrm{E}_{\text {jet }}=.06 \rightarrow .03$
equiv to $1.3 \times$ Lumi

$$
\cdots \frac{\Delta E_{j e t}}{E_{j e t}} \approx \text { PFA Current Status }
$$

True Jet Energy Distribution for $e^{+} e^{-} \rightarrow$ ZHH $\rightarrow q \bar{q} b \bar{b} b \bar{b}$ at $\sqrt{s}=500 \mathrm{GeV}$

$$
\begin{aligned}
& 工 \quad \frac{\Delta E_{\text {jet }}}{E_{j e t}}=\frac{0.6}{\sqrt{E_{\text {jet }}}} \\
& \cdots \quad \frac{\Delta E_{\text {jet }}}{E_{\text {jet }}}=\frac{0.4}{\sqrt{E_{\text {jet }}}} \\
& 工 \quad \frac{\Delta E_{j e t}}{E_{\text {jet }}}=\frac{0.3}{\sqrt{E_{\text {jet }}}}
\end{aligned}
$$

Summary

- Single particle resolution parameters of the org.lcsim FastMC have been tuned to give a reasonable approximation to PandoraPFA v02-01. Using this new FastMC tune several studies were performed/updated.
- Dijet mass resolution for single W,Z bosons appears to be dominated by PFA jet energy resolution - angle and jet mass errors are small. For $\Delta \mathrm{E}_{\mathrm{iet}} / \mathrm{E}_{\mathrm{jet}}=0.033$ the mass resolutions are 2.8 (3.1) GeV for $\mathrm{W}(\mathrm{Z})$.
- Jet finding in final states with two massive bosons produces a dijet mass sys error of $2-2.5 \mathrm{GeV}$ in the absence of gluon rad. This is about the size of the W,Z intrinsic widths.

Summary cont.

- Gluon radiation creates a long tail in the dijet mass distribution for events with two massive bosons. This blows up the rms, but the core width is approx maintained.
- Various jet resolutions variables have been used in the past when quoting physics error vs jet resolution. The choice of variable can affect the lumi gain. Also, jet energy response of detector was often dominated by a $1 / \sqrt{E_{\text {jee }}}$ term which isn't seen in PFA studies. Redoing these studies using the new org.lcsim FastMC single particle tune and a consistent jet resolution variable $\left(\Delta \mathrm{E}_{\mathrm{jet}} / \mathrm{E}_{\text {jet }}\right)_{90}$ leads to different conclusions regarding the effective luminosity gain.

