

Status of SCRF

Lutz Lilje DESY

4.4.2008 ILC Project@DESY

Global Design Effort

1

- S0S1
- Review of the information at Sendai
 - (several slides from a talk by H. Hayano)
 - Japan
 - Americas
 - Europe
- + some recent XFEL/DESY information
- Status of re-Planning

S0 Status: High Gradients

- Field emission has been reduced
 - This is good news
 - Monitoring the three approaches (Ethanol, Ultrasound or Fresh EP) needed
 - Is there a significant advantage of one over the other?
 - Data set for Fresh EP on multi-cells small
- Still rather large gradient differences are observed due to thermal breakdowns
 - Needs improved understanding of the nature of these breakdowns
 - E.g. some of the very low gradient breakdowns have been tracked to the equator region
 - At higher gradients this is not yet obvious
 - Need improved diagnostics
 - High-resolution temperature maps and high resolution optical inspection

- There is a broad consensus on this in the SCRF community

See recent TTC Meeting at DESY

ILC Project@DESY

Global Design Effort

- Module development
 - First ILC-like module (with TESLA-type cavity) cooled down
 - 4-cavity module assembled
- EP
 - Setup at KEK under commissioning
 - In addition to industry setup
- Optical inspection
 - High-resolution surface inspection developed
- Vendor Qualification
 - Two japanese companies
- Alternatives
 - Second module with one Low-Loss (Ichiro) type cavity under test now

TESLA-shape cavity cool-down test

Program:

Oct. 03-12: cool down test, suspended by SRF workshop Oct. 22 -26: re-cool down Oct.29 - Nov. 02 : 4K Test (1 week) Nov.05 - Nov. 09 : 2K Test(1 week) Nov.12 - Nov 22 : 2K with HLRF on (2 weeks)

Study Item:

Cool down control Heat load measurements Cavity fundamentals(Q,Eacc,f0..) Lorentz detuning Piezo compensation Mechanical vibration GRP distortion by WPM etc.

4 TESLA cavities are ready for STF 1 experiment

TESLA-style cavities were assembled in clean room, hung on the cold mass, and inserted into the vessel, on Feb. 29, 2008.

LL ICHIRO cavity in STF0.5 experiment

Ichiro #1 cool down test in cryomodule: Feb. 13 to Mar. 28, 2008

Now under test!

Heat load measurement, Ball-screw tuner test, coupler performance test, cavity performance test (19.5MV/m in VT), etc.

STF Cavity Surface Process Facility

Kyoto/KEK High Resolution Camera

Results of AES01 (FNAL)

- Module
 - First module assembled
 - Together with several DESY experts
- Cavity
 - Cavity order from last year
 - Process as many as possible (< 10 cavities)
 - Vendor Qualification for a US vendor
 - New EP installation at Argonne
 - Development of diagnostics
 - Temperature mapping
 - Alternatives
 - Large-grain niobium material

FNAL CM Assembly

Horizontal Test Cryomodule, C22 tested

String Assembly with DESY Cavities

First CM Ready for Test Facility

4.4.2008 Lutz Lilje ILC Project@DESY **Global Design Effort**

Argonne EP Commissioned with One-Cell

Global Design Effort

9-cell Test Results

ilc

T-map development

Jlab One Cell Thermometry Assembly

LANL 9-cell T-map development

4.4.2008 Lutz Lilje ILC Project@DESY **Global Design Effort**

9-cell Cavity performance(Jlab) Large Grain

- Two 9-cell cavities (LG#1,LG#2) were fabricated at Jlab from large grain CBMM niobium (ingot"D"); several holes during EBW in both cavities
- Standard processing:pre-tuning, 100 micron bcp,hydrogen degassing at 600C for 10 hrs,final tuning, final bcp
- LG #1 received only ~ 40 micron, LG#2 ~ 57 micron bcp in final bcp
- LG#1: quench at Eacc = 23 MV/m,

4.4.2008 Lutz Lilje ILC Project@DESY **Global Design Effort**

• XFEL

- Setting up a cold linac collaboration

- Distribution of workload, knowledge, money... amongst several partners
- Module 'Crash' Tests
 - Demonstrate compliance with high pressure vessel codes etc.
 - Understand recovery options
- Cavity
 - Further tests with Ethanol rinse
 - Large-grain with EP
 - Fast Argon-bake

XFEL Components (Some...)

XFEL needs

808 cavities for
101 accelerator modules, i.e.
808 frequency tuners,
808 RF main input couplers,
1616 HOM pick-ups,
101 HOM absorbers
etc.

Due to the long leadtime all components need to be specified in 2008,

the call for tender process to be started before end of 2008, orders be placed not later than beginning of 2009.

Reminder: Proposal Made to the In-kind Review Committee

Common in-kind proposal for the superconducting linac of the XFEL WP3 – WP9 and WP11

presented to the IKRC by Hans Weise / DESY

for

CEA Saclay CIEMAT DESY INFN IPJ Swierk LAL Orsay

HELMHOLTZ

Summary

Accelerator Modules		Laboratory		Country	Invest	/ M€	FTE	FT	E/M€
	WP – 3	CEA Saclay		France		60%			43%
		INFN		Italy		19%			29%
		DESY		Germany		21%			29%
	sum					100%			100%
Superconducting Cavities	WP – 4	INFN							34%
		DESY		France					66%
	sum						26%		100%
		Received from							
Power Couplers	WP – 5	LAL Orsay							52%
		DESY							48%
		or	Germany						
		LAL Orsay	49%						100%
		DESY	4070						0%
	sum								100%
HOM Coupler / Pick-up	WP – 6	IPJ Swierk				,			100%
	sum						Italy		100%
Frequency Tuners	WP – 7	DESY					пату		100%
	sum				/ \		22%		100%
Cold Vacuum	WP – 8	DESY		Delen	. / /	- ·			100%
	sum			Polanc	י ן ג	Spain			100%
Cavity String Assembly /	WP – 9	CEA Saclay		2%		1%			51%
Clean Room Quality		DESY		Sermany		10/0			49%
Acquirence		Transferred to	WP -4						
Assurance	sum					100%			100%
Cold magnets	WP - 11	CIEMAT		Spain		56%			10%
		DESY		Germany		44%			90%
	sum					100%			100%

- Fabrication of cold masses (incl. outer vessel)
- module assembly w/o frequency tuner & power coupler; start with assembled string and finish with module installation
- weld connections
- alignment inside modules
- transportation of assembled accelerator modules

- material specifications, safety issues
- define processes for integration / assembly
- magnetic shielding / demagnetization
- sensors inside the accelerator modules
- pre-alignment of cavities and coupler position

- Complete mechanical fabrication of all cavities
- Surface treatment
- Consultant at start up of infrastructure and at full running production
- Helium vessel incl. Titanium parts (taken over from WP-9)

The European X-Ray Laser Project nvest FTE 52% LAL 73% LAL WP – 5 Power Coupler 27% **DESY** 48% **DESY**

- Coupler production incl. project and industries follow-up
- Coupler conditioning
- Infrastructure required for coupler assembly and conditioning, i.e. clean room and modulator / klystron
- Technical interlock
- Tunnel installation / cabling of technical interlock
- Motor electronics

WP – 9 Cavity String Assembly / Clean Room Quality Assurance

The European X-Ray Laser Project

90% CEA

10% **DESY**

nvest

ШL

51% CEA

49% **DESY**

Module assembly see WP-3

- Helium vessel fabrication
- Titanium Tube and 2-phase line
- String assembly
- Knowledge transfer / consultant / training
- Database set-up and running / Quality control of infrastructure
- EDMS

HELMHOLTZ

WP – 11 Cold Magnets

The European X-Ray Laser Project

E

10% CIEMAT

90% **DESY**

- fabrication of 2K quadrupole package
- test of quadrupole package

A

String Assembly Plans at Saclay

29

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008 Date Event

DAPNIA (Saclay) Expertise on SCRF Technology

Soleil: From the prototype to CM1 and CM2

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008 Date Event

Saclay Plans for Module Assembly

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008 Date Event

B

The European X-Ray Laser Project

X-Ray Fr

Mock-up Tunnel

-The two Vacuum Vessel in the Mock-up tunnel -Endplates for Vacuum vessel under preparation

-Dress the Mock-up vessel with all outer flanges and supports

Tunnel Mock-up Status

 Preparation of dummy modules for installation tests

HELMHOLTZ

Ramila Amirikas, Alessandro Bertolini, Jürgen Eschke, Mark Lomperski

XFEL: Accelerator Module Performance

35

Sequence of Tests in Module Crash Test

Venting	Condition	Cavity	Coupler	Tuner	Сгуо	ВРМ	Vacuum	Remark
lso slow	2K, 30 mbar RF Off			Check Piezo	Measure losses		Measure	Helium Rate and Level tbd.
Coupler slow	2K, 30 mbar RF Off		Perfomance Reprocessing		Measure losses		Measure	Nitrogen Rate and Level tbd.
Cavity slow	2K, 30 mbar RF Off	Performance Detuning Reprocessing			Measure losses		Measure	Nitrogen Rate and Level tbd.
lso fast i	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture	Tuner motors	Pressure increases, He Pipe rupture, MLI integrity	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
lso fast II	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture	Tuner motors	Pressure increases He Pipe rupture MLI integrity	Ceramic rupture	Measure Leaks	Catastrophic, Air
Coupler fast	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture		Measure Leaks	Controlled, Rate tbd, Nitrogen
Cavity fast I	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
Cavity fast II	2K, 30 mbar RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Catastrophic, Air
Cavity fast III	2K, 30 mbar RF On	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Controlled, Rate tbd, Nitrogen
Cavity fast IV	4.5K, 1.7 bar, RF Off	Performance Detuning Reprocessing	Ceramic rupture		Pressure increases He Pipe rupture	Ceramic rupture	Measure Leaks	Air, Need to block 2 safety valves (VD1R130 and VS1R90)

Ø

Venting systems for Coupler-, Cavityand Iso-vacuum

Venting system coupler-vacuum DN 100

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008

Venting system beam-pipe-vacuum DN 100

Venting system isovacuum DN 100

HELMHOLTZ

Additional Sensors for Crash Test

Slow Isolation Vacuum Venting with Helium

	TTF 2003	03.2008	03.2008	03.2008
	Iso 1*10-6	Iso 3*10-5	lso 7*10-5	lso 2*10-4
4,3 K	14 W	14,43 W	22,7 W	58 W
circuit				
2 K	< 3,5 W	3,3 W	3,84 W	12,47 W
circuit				
40/80 K	75 W	125,6 W	112 W	43,3 W
circuit		(endcaps!)	(endcaps!)	

Koppler slow-venting with N2 at 2 K

40

Cryo-losses : isolation-vac.: 6 – 7 * 10-5 mbar / coupler-vac.

vented!

	Design	Couplervac.	Couplervac.
	TDR	10-8 mbar	10-1 mbar
4,3 K circuit	21 W	22,70 W	23,77 W
2 K circuit	4,2 W	3,84 W	4,07 W
40/80 K	115 W	112 W !	108,66W!
circuit		Flow 12,20 g/sec	Flow 11,56 g/sec

Slow venting beampipe-vac.at 2 K operation

- First step venting ca. 500 I with N2 (27.03)
- Overnight-break: measure kryo-losses
- Second step venting ca. 1600 I with N2 (28.03)
- Warm up complete modul
- Check of safety valves beampipe

Slow venting beampipevac. with N2

Venting beampipe with ca. 500 I N25,5*10-7Over night - braek5,5*10-7Venting beampipe with5,5*10-7	Exe bar	ept to 8 g/sec	max. 32,5mbar
Over night - braek5,5*10-7Venting beampipe with5,5*10-7			
Venting beampipe with 5,5*10-7 m	bar	rmal 1,15-1,2g/sec	30 mbar
ca. 1600 N2	bar Exe	ept to 12/sec	max. 40 mbar

First slow venting beampipe 27.03.2008

Date

Second slow venting beampipe 28.03.2008

Date

Venting Tests: Summary + Outlook

- Under cold conditions all three vacuum systems of the accelerator module have been slowly vented
- Observations
 - Cryolosses increase as expected
 - <u>NO</u> broken components so far!
- Next steps
 - Warm up
 - Performance check on cavities + couplers
 - Start crash vents:
 - Isolation vacuum first

- First Industry EP multi-cell cavities
 - Bulk EP at companies, final treatment at DESY
- Qualification of niobium vendors
 - Plansee qualified
- Large grain multi-cell cavity with EP
- Fast Argon bake
 - Saclay (Closed) and DESY (Open)

Open Bake in Ar-atmosphere: set-up

Detlef Reschke Q(E)-curves at 2K

1DE2: Open Bake in Ar-atmosphere

 Goal: Realize simple 120C-bake procedure for open cavity (cavity not assembled; no cavity vacuum necessary)

- Address variability in gradients with improving on diagnostics
 - Add temperature mapping capacity to labs who have no capabilities yet
 - Add high-resolution inspection
 - Monitor on-going effort with best preparation methods
- Less resources, stretch timeline to 2012
- International 'proof-of-principle' module
- Next:

- FNAL Meeting 21-25th of April

Replan of ILC-SCRF R&D

updated, March 4, 2008

- TDP1 by 2010:
 - S0: achieve 35 MV/m with 9-cell cavities at the yield 50 % under well defined processing-base,
 - S1-Global: achieve <31.5 MV/m> with cryomodule-assembly
 - <u>with global cooperation</u> (for example, 4-AS, 2-US, 2-EU).
 - Note: the S1 achievable also, if 3 Tesla-type cavities added to the existing 5 cavities in CM2 at Fermilab.
 - Cryomodule design: establish "plug-compatible interface and design
- TDP2-by 2012:
 - S0: achieve 35 MV/m with 9-cell cavities at the yield 90 % under well defined processing-base.
 - S1: achieve <31.5 MV/m> with full cavity-assembly (similarly processed) in single cryomodule, CM3 or CM4 (at Fermilab, US)
 - S2: achieved <31.5 MV/m> with 3 cryomodule assembly to be powered by 1 RF unit, and with beam acceleration, in STF-2 at KEK.
 - Industrialization: Learn from XFEL, & Cooperation with Project-X

Global Plan proposed

		C١	608		CY1	C		CY12
EDR	TDP ²	1				TDP-II		
S0:	30							35
Cavity Gradient (MV/m)								(>90%)
KEK-STF-0.5a: 1 Tesla-like								
KEK-STF-0.5b: 1 LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU)				CM (4 _{AS} +2 _{US} +2 _{EU})				
1 CM (4+2+2 cavities)				<31.5 MV/	<31.5 MV/m>			
S2 & STF2: One RF unit & 3 CM with beam		de	sign	Fabrication in industriesAssembled at STF		and test		
S1-Fermilab/US			CM1	CM2 CM3(Type-IV)		CM4		
ILC-CM-3 or -4								

A. Yamamoto

Cryomodule Design

with plug-compatible components

•	CM with modular sub-assemblies	Cost fraction
	 Cavity unit (cavity + helium vessel + tuner) 	64%
	– Coupler	12%
	 Quad package (quad + corrector) 	4%
	– BPM	2%
	 Cold-mass (cold-piping) 	x/19%
	– Vacuum vessel	y/19%
•	 Plug-compatible, Interface specifications To be generally agreed at Fermilab meeting, Plug-compatible IS enables parallel develoced during the TDP phases, 	(IS) in April, 2008 pment, afterwards,

Summary

- Basis of ILC Technology is broadening
 - Asia and America have built the first modules
- Surface preparation improved
 - Field emission reduced somewhat
- Scatter of gradients due to thermal breakdowns
 - Partially new vendor qualification
 - Potentially other reasons as well
 - Need to improve diagnostics (optical and thermal)
- XFEL is a big asset for ILC
 - Industrialisation
 - Internationalization of a project
 - Crash test
 - Operational experience with FLASH
 - Continuous production of cavities
- Some Alternates very promising
 - Fast Argon bake
 - Large grain niobium material

Backup

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008 Date Event

HELMHOLTZ

FNAL: Vertical Test Set Up Complete AES 9-cell Cavities under Test

4.4.2008 Lutz Lilje ILC Project@DESY **Global Design Effort**

Small design changes to reduce cost and simplify fabrication

Removal of coupler port stiffener Reducing of flange machining short side Removal of outside recess (equator area) Less holes and thinner the stiffener ring Review tolerances

Short side (machined step under discussion)

No rib

Long side

XFEL Overall Schedule as the Basis

	10		y2007	y2008	y2009	y2010	y2011	y2012	y2013	y2014	y2015
٠	26										
	27	Linac (XTL)	R&D	call for ten	ider and ordering	fabricatio	on				
	28							inst	allation		
_	29								commis	sioning	operation
[·	30	acc.module tendering + pre-series									
•	39	acc.module fabrication					101 modules over	2 years			
1 ·	40	acc.module testing									
1 ·	41	XTL installation									
1.1	42	Linac cool down & comm.									
١ſ٠	43	XTL techn.commissioning									
11.	44	commissioning with beam									
Ξ.	45										
Ξ.	46	Accelerator sub-systems (components)									
	47										
	48										
	49										
	50										
+	58										
	59	Technical infrastructure									
	60										
	61										
	62										
	63										
+	70										
	71	Operations & control									
	72										
	73										
	74										
	75										
	76										
	77	Undulator & photon beamlines (XTDs)									
	78										
	79										
	80										
+	87										
	88	1st beam injector									
	89	1st beam linac									
	90	SASE1 gain at 0.2 nm									
	91	all beam lines oper.									

HELMHOLTZ

XFEL Overall Schedule - First Details

K. Jensch, D. Kostin, R. Lange, L. Lilje, DESY, XFEL Meeting, 12.3.2008 Date Event

Details of the Spiral 2 Cryomodule

HELMHOLTZ

Mock-up Tunnel

HOM-Ab and Gate valves

Endplate (4) for Mock-up vessel

XFEL-Module Meeting MOD041, 19-Feb-2008

Module Connection on single dummy

Weld tractor with special weld head for HeGRP connection, developed at Desy

