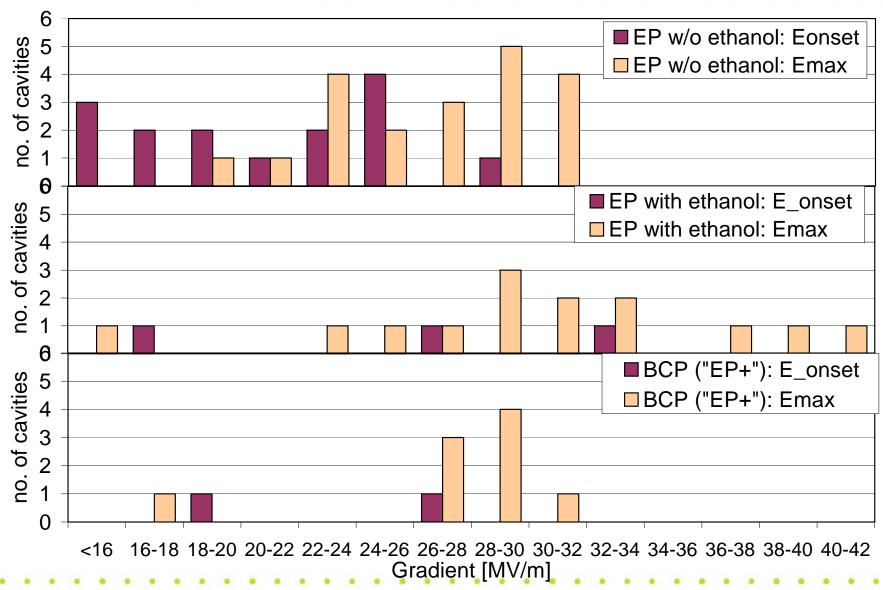


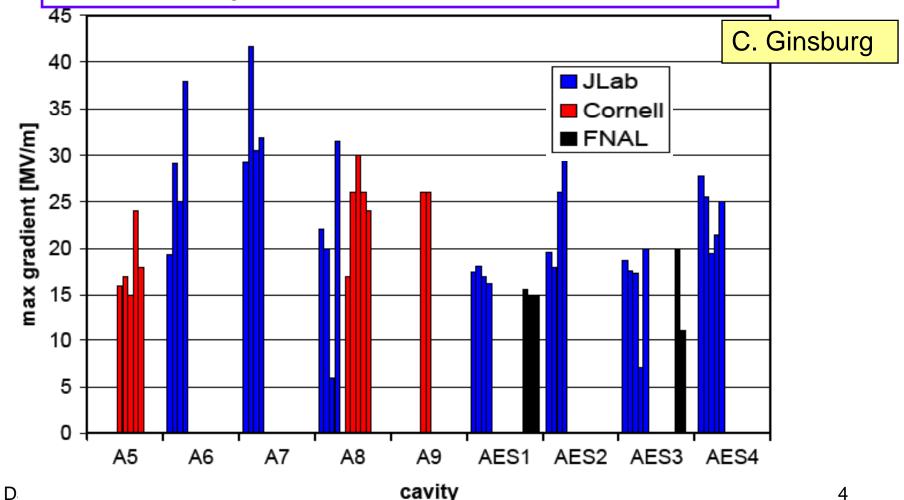
ILC S0 Strategy

Proposal FNAL 24.4.2008

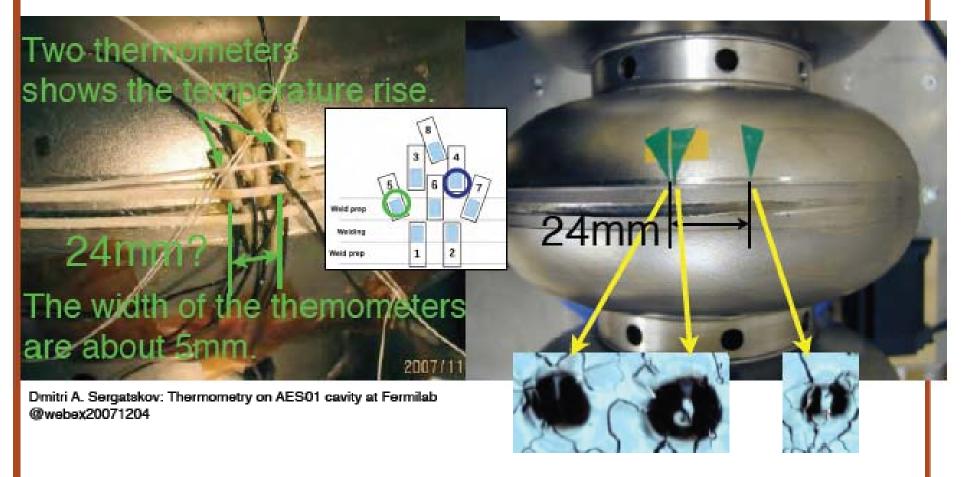


S0 Status: High Gradients

- Field emission has been reduced
 - This is good news
 - Monitoring the three approaches (Ethanol, Ultrasound or Fresh EP) needed
 - Is there a significant advantage of one over the other?
 - Data set for Fresh EP on multi-cells small
- Still rather large gradient differences are observed due to thermal breakdowns
 - Needs improved understanding of the nature of these breakdowns
 - E.g. some of the very low gradient breakdowns have been tracked to the equator region
 - At higher gradients this is not yet obvious
 - Need improved diagnostics
 - High-resolution temperature maps and high resolution optical inspection
 - There is a broad consensus on this in the SCRF community
 - See recent TTC Meeting at DESY
- In the following a program to attack this problem is proposed



DESY 4th: Field Emission Analysis



Summary of 9-cell (Tesla-style) Test Results

- □>45 tests at JLab, Cornell and Fermilab
- □ Highest gradient in a test was 42 MV/m A7, 2nd test of 4
- □ Four of the eight cavities made 31.5 MV/m at least once

Correlation with Thermometry

Two hot spots@FNAL/JLAB

Three spots found@Kyoto

High Gradient R&D

H. Hayano

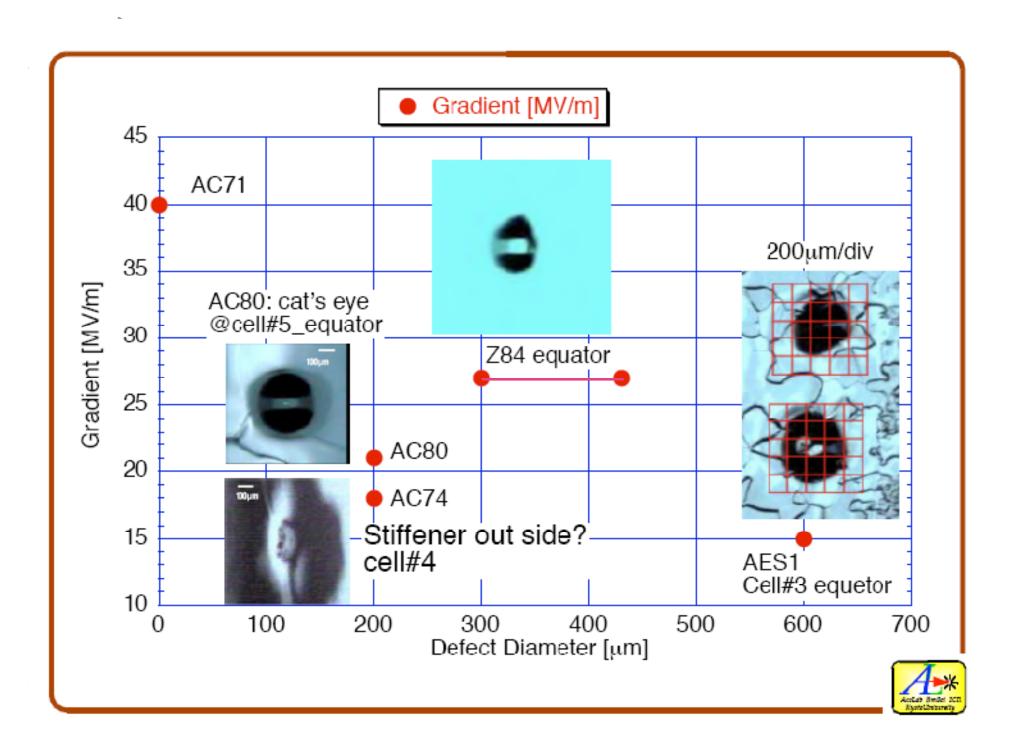
step 1: research to find cause of low gradient

for quench: high resolution camera

for field emission: confirm what is the residuals on the surface (SEM, XPS)

for Q-disease: confirm what is the diffused into the surface (XPS)

step 2: develop countermeasure

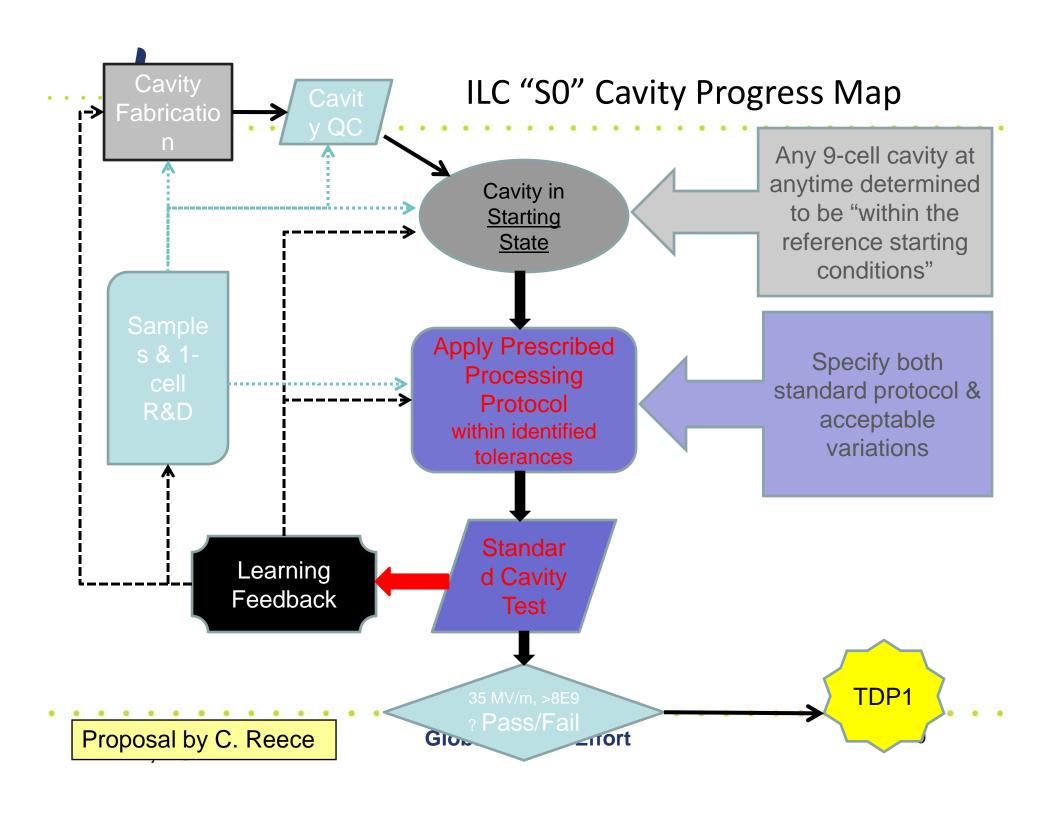

for quench: (remove beads & pits, material impurities & defect scan, ...)
for field emission: (ethanol rinse, degreaser rinse, sponge wipe, Ultra-sonic, HPR,...)
for Q-disease: (baking, Argon baking, ...)

step 3: apply & verify countermeasure

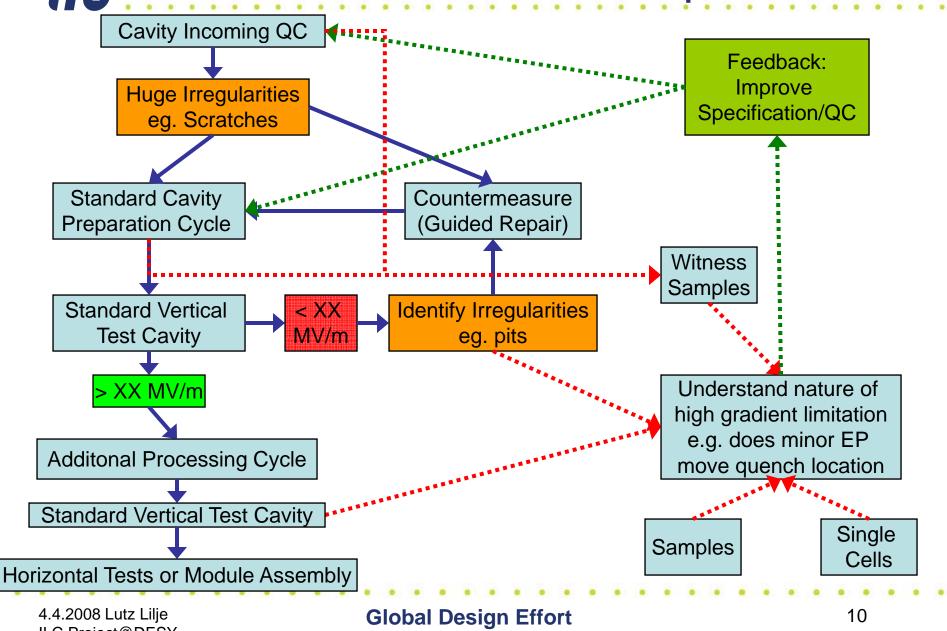
exchange problem cavities and apply the countermeasure

step 4: evaluate statistics for the countermeasure

install the countermeasure world-wide, get statistics world-wide.



S0 Program: Rationale


- Take a sample of cavities e.g. DESY 4th production
 - May depend on manufacturer
- Assume cavities below a threshold (<XX MV/m) have well identifiable defects (>50 um)
 - This is substantiated by the initial results on AES cavities
- Decision Point at threshold
 - <XX MV/m</p>
 - · Identify and remove defect
 - Retest
 - Demonstrate effectiveness of guided repair
 - 20 % of cavities go this way if estimate from DESY 4th production

- >XX MV/m

- need understand causes of cavity performance variability at high-gradient limit
- Possible Hypotheses
 - Visible defects (with high-res optical inpsection), but smaller
 - contaminants from solvent/detergent rinse
- 'Process-test-reprocess-retest' is required using thermometry
 - This was done e.g. with Ichiro 5

ILC S0 Feedback Loop

ILC Project@DESY

Definition of the Cavity Processing Cycle

- Incoming cavity QC: Niobium material and cavity fabrication
 - Optical inspection of as-received cavity.
 - Decision: Continue or Repair
- Standard Processing Recipe
 - Bulk electro-polishing of ~150 um.
 - Ultrasonic degreasing.
 - High-pressure rinsing.
 - QC : Optical inspection
 - Hydrogen degassing at 600 deg C.
 - Field-flatness tuning.
 - QC : Optical inspection
 - 20 um electro-polishing.
 - Ultrasonic degreasing.
 - High-pressure rinsing.
 - Assembly and vacuum leak testing.
 - 120 deg C bake.
- Vertical dewar test.
 - Decision: Optical inspection or send to module?
 - QC: Optical inspection

Definition of Standard Test

- Hold at ~100 K during cool down to check for Q disease.
- Q vs. T measurement during cool down.
- Q vs. E measurement on π mode. RF process as needed.
- Q vs. E measurement on all other modes. RF process as needed.
- Final Q vs. E measurement on π mode.
- Notes:
- All Q vs. E measurements to include radiation data logging.
- Utilize nine-cell temperature-mapping system if available.

Diagnostic Techniques

- Determine limiting cells based on mode measurements.
- If nine-cell temperature-mapping was not employed, apply thermometry to limiting cells and retest.
- Perform optical inspection of limiting cells.

Definition of Countermeasures

- Defect is identified, size is known
- Possible Countermeasures
 - Local
 - Grinding and/or etch
 - guided repair e.g. diamond proposed by Hayano
 - Re-weld
 - needs to be validated on samples first

Full cavity

- Tumbling
 - better for defects in equator region
- Full EP with sufficient removal
 - especially effective in iris region
- Titanisation
 - very time consuming treatment
 - should be the last resort

Definition of a Single-Cell Program for S0

- Use a set of single-cells cavities to 'calibrate' the systems mentioned i.e. optical inspection and thermometry
- A detailed analysis of the results is needed
 - Need to determine
 - the distribution of defects (size, location, type) with optical inspection
 - the distribution of hotspots below maximum field
 - the quench location
 - · final step could be the dissection of the cavity
- Check for correlation with the
 - weld affected region e.g. overlap
 - grain boundary
 - grain size
- Re-treatment of several cavities is needed to verify whether the breakdown locations are changing or are locally invariant
- Sample cavities to included
 - Fine grain, welded
 - Large-grain (or single crystal), welded
 - Compare EP and BCP
 - Fine-grain seamless
- Acknowledgdement:
 - Some work has already started e.g on effects of grain boundaries
 - This should be encouraged and intensified

Requirements for a Sample Program for S0

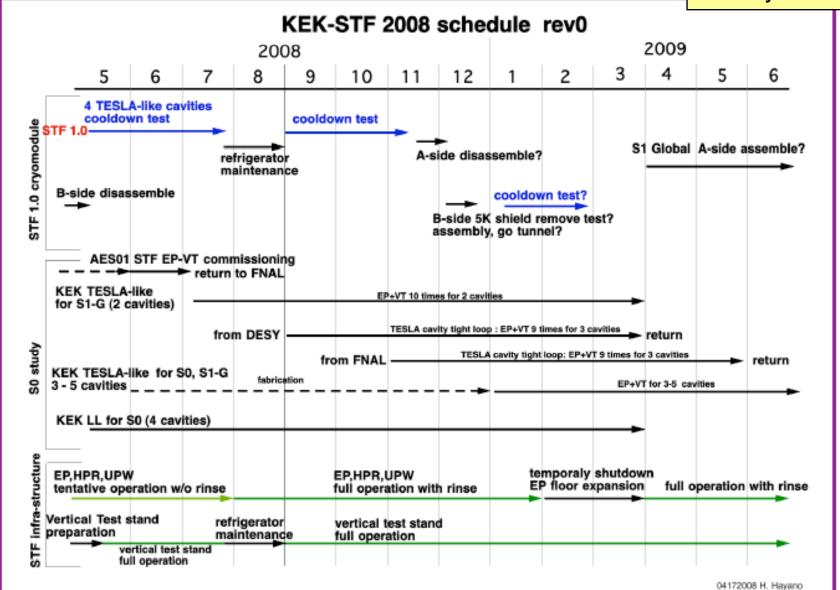
- The sample program should investigate
 - Quality of the weld region
 - check for voids
 - use as witness samples in fabrication
 - simulate procedures at companies
 - (RRR distribution: See DESY results W. Singer et al.)
 - Improvements of weld quality
 - EP of weld regions before EBW
 - Sample holder cavity
 - Witness samples from preparation process
- Use all available surface inspection methods...
- Acknowledgdement:
 - Some work has already started e.g on residues from preparation processes
 - This should be encouraged and intensified

Choice of the Threshold Gradient XX MV/m

- Repair and testing cycles are likely resource limited
 - Some repair methods not yet available
 - Overall resource issues
- Proposal:
 - Test of a set of cavities
 - Subset of ~20% low-performing cavities will be repaired
 - Demonstrate the effectiveness
 - Gradient should at least reach the average of the 80% of the cavitiy set
- The threshold should therefore increase over time and is measure of the success of the program

Cavity and Test Options for 2008/2009

- DESY
 - Cavities
 - 10 (+8) with pure EP cycle
 - Only partially with T-maps, tank-welded
 - 8 LG cavities
 - Tests: According to the number of cavities
- US
 - Cavities
 - 20 ACCEL
 - 6 AES
 - 2 JLab
 - Tests: 54 test cycles total (FY09)
- KEK
 - Cavities
 - 2 Cavities TESLA-like ready for preparation now
 - 3-5 Cavities TESLA-like ready for preparation end march 09
 - 4 LL-Caviities ready for preparation now
 - 2 w/o HOM
 - 2 with HOM
 - Tests: ~24 test cycles



M. Champion

<u> </u>	Cavity Inventory									
	Α	В	С	D						
	ILC Tesla-shape nine-cell o									
	Description	No. Cavities	Status	Location						
	AES 1-4	4	tested	AES1 at KEK; AES3 at FNAL; AES2,4 at Jlab						
4	AES 5-10	6	due May 2008							
5	Accel 5-9	5	tested	Acc7 at ANL; Acc6,8 at Jlab; Acc5,9 at Cornell						
	Accel 10-17	8	received Mar 2008	at FNAL						
_	Accel 18-29	12	due Sep 2008							
	Jlab fine-grain prototype	1	tested	at Jlab						
9	Jlab large-grain 1-2	2	tested	at Jlab						
	Jlab fine-grain 1-2	2	fabrication incomplete	at Jlab						
	TBD - 10 cavity FY09 order	10	will order in FY09							
12										
13	Total	50								
	Already Received	20								
15										
16										
17										
18										
		C Tesla-shape single-cell cavities								
	Description	No. Cavities		Location						
_	AES 1-6	6	tested at Cornell	one at Jlab, two at FNAL, three at Cornell						
_	Accel 1-6	6	due Sep 2008							
	Roark 1-3	3	due Apr 2008							
	Niowave 1-3	3	due Apr 2008							
25										
	Total	18								
27	Already Received	6								

H. Hayano

Cavity Programs beyond S0

- Programs with great importance which need to be funded are
 - Large-grain material
 - Vendor qualification
- Both Programs are extending beyond the initial scope of S0
 - too limited capacity/funding to incorporate in S0 funding
- Tax on standard program for near term and long term R&D items
 - 10 % near-term
 - large-grain and vendor qualification
 - 5 % long-term

Conclusion

- After reduction of field emission additional diagnostics methods need to be applied systematically
 - High-resolution optical inspection and temperaturemapping have shown very encouraging results
- A plan has been developed to implement a feedback loop into the cavity production cycle
 - Loop is designed to generate understanding of nature of defects
 - E.g. origin and relevance of defects by optical inspection
 - Need more data to substantiate results from Kyoto
 - Supporting single-cell and sample program
 - Standard test definition will allow to compare data across labs

BACKUP

Definition of a data set for TDP1

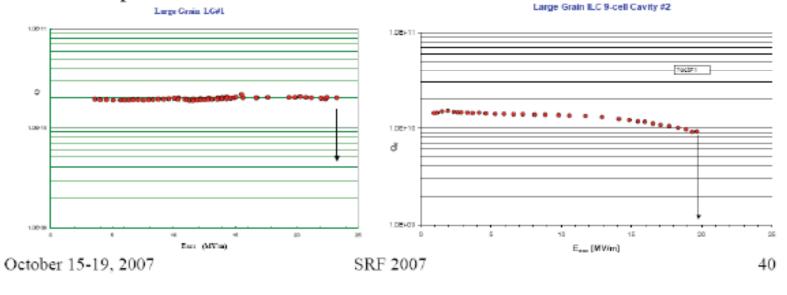
- Proposals from Discussion
 - Take all cavities
 - Take only selected vendor
 - After successful optical inspection counting of cavities does start
 - Remove accidents, leaks etc. from data set
- In all cases allow 20 % retreatment of cavities
 - What does re-treatment mean?
 - Is repair allowed?
- How many cavities will be left?

Basic understanding

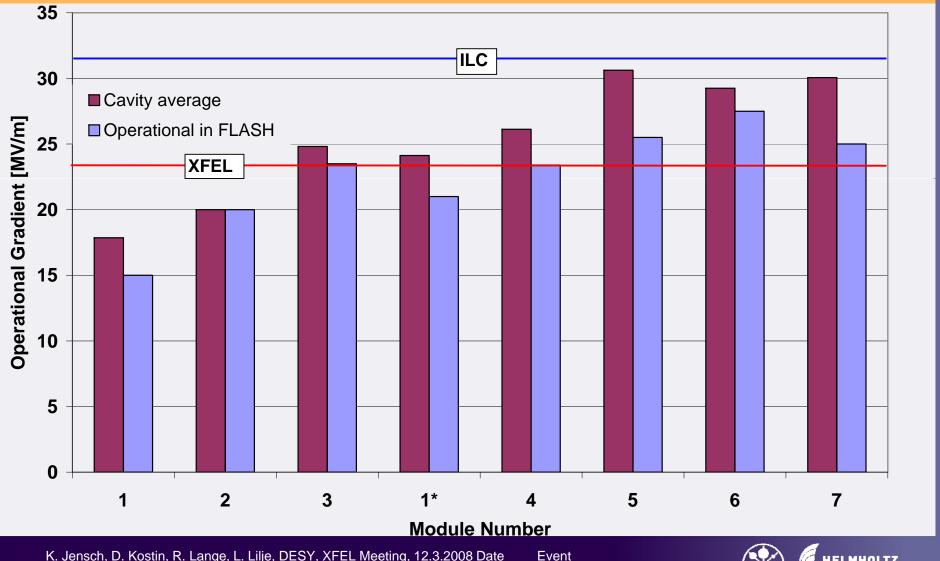
- Tools
 - Samples
 - Do we see the defects similar to those in cavity on samples?
 - Do we see the chemical contaminations similar to those in cavity on samples?
 - Dummy or ,button' cavity with demountable samples
 - polish samples in main coupler port
 - QC of nine-cells
 - Single-cells
 - (Other fabrication techniques)
 - Understanding nature of defects by anodisation
 - e.g Foreign material inclusions
 - Guided repair to demonstrate understanding
 - see talk be H. Hayano
 - · crosscheck applicability of methods with soft niobium
- Method
 - variation of fabrication and preparation parameters
 - on purpose or by chance
 - e.g. single-crystal cavities compared to fine-grain
 - find quench location is there a distinction

Training of companies

- Necessity in all regions
 - Fabrication
 - Is this a quality control issue? At least partially
 - Need to understand whether the defects (balls or pits are related to EBW process)
 - Preparation
 - XFEL goes first
 - ILC has probably more time with this part
- Certainly one source of variability
 - e.g. DESY 4th production
- Plays a role in the selection of the data set for the TDP 1+2 data sets
- Check vendor qualification criteria
 - Well enough defined?
- Is this a generic SRF issue?


Handling of alternatives

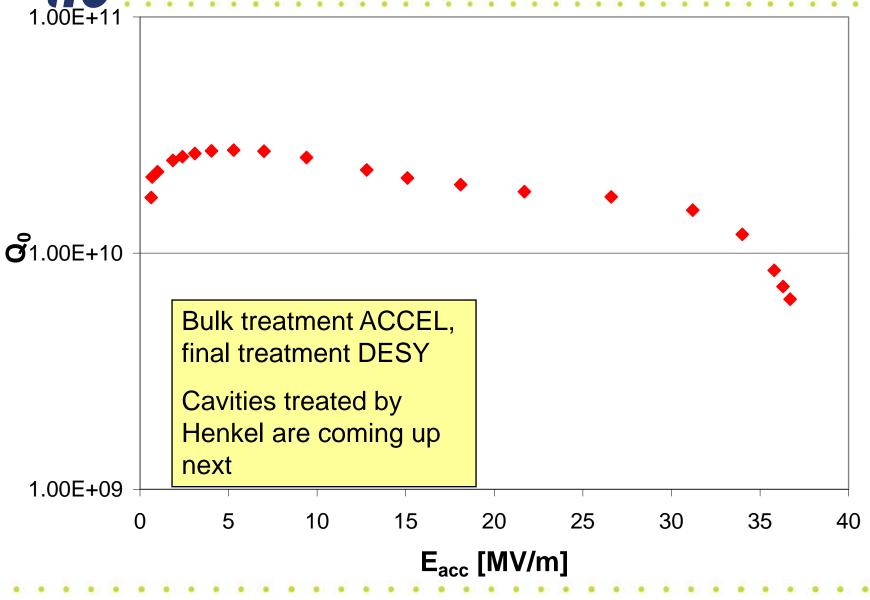
- Some proposals
 - are advanced R&D where it is unclear whether they pay off
 - are beyond of the high-gradient scope e.g. cost reduction
- These should be supported from the generic SRF fund!
- If funding is limited to High-Gradient work a priorization needed
 - Suggested criteria
 - Near-term, Long-term
 - Integration in international context

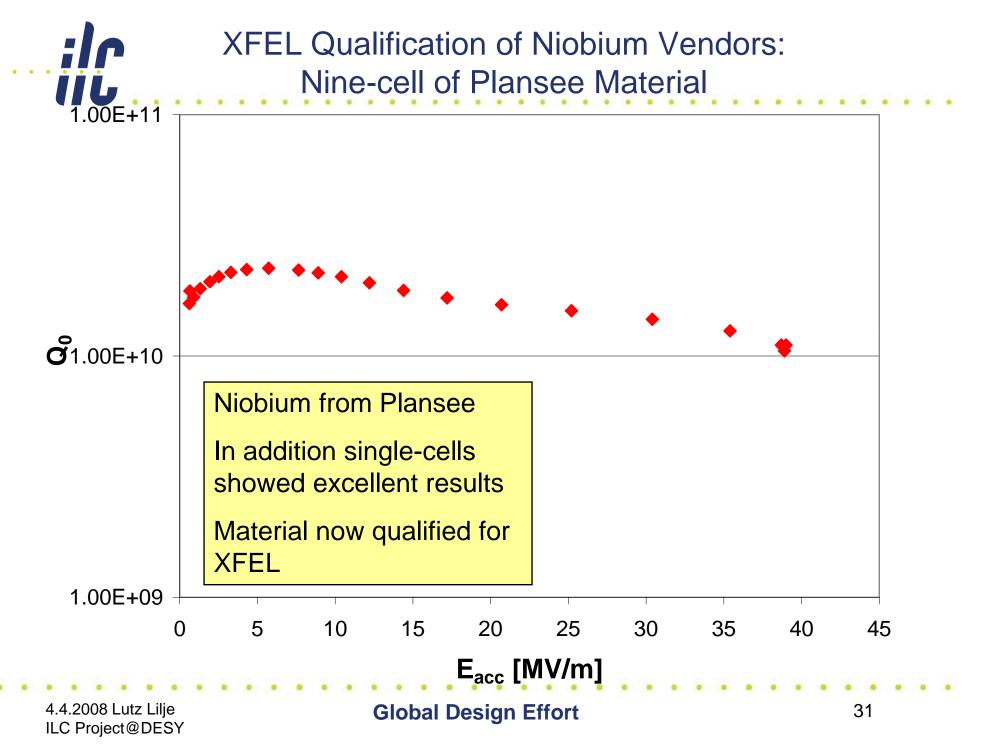

9-cell Cavity performance(Jlab)

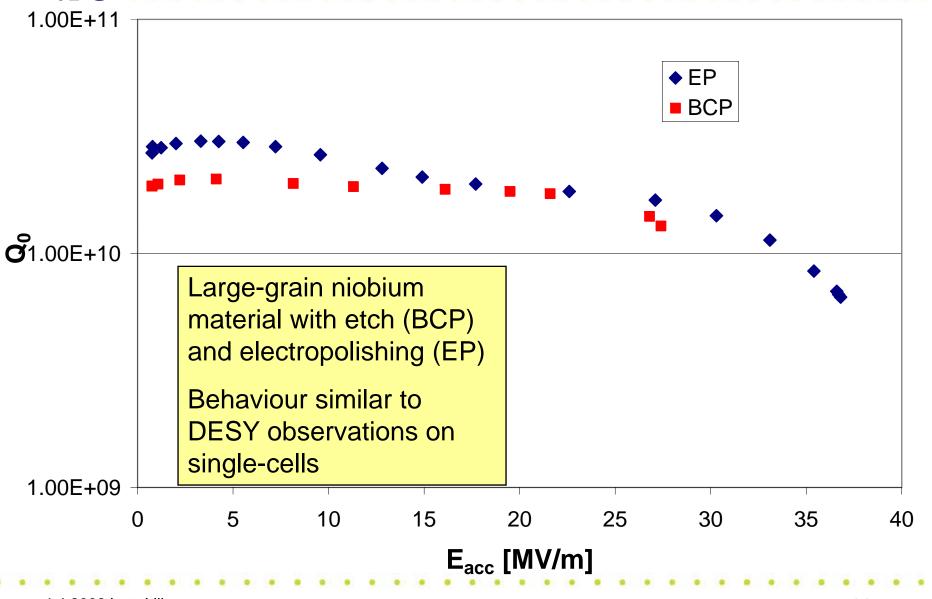
Large Grain

- Two 9-cell cavities (LG#1,LG#2) were fabricated at Jlab from large grain CBMM niobium (ingot"D"); several holes during EBW in both cavities
- Standard processing:pre-tuning, 100 micron bcp,hydrogen degassing at 600C for 10 hrs,final tuning, final bcp
- LG #1 received only ~ 40 micron, LG#2 ~ 57 micron bcp in final bcp
- LG#1: quench at Eacc = 23 MV/m,
- LG#2: quench at Eacc = 20 MV/m

XFEL: Accelerator Module Performance






XFEL Industry EP on Multi-cells

XFEL: Large Grain Multi-cell with EP

Status of Re-Planning

- Address variability in gradients with improving on diagnostics
 - Add temperature mapping capacity to labs who have no capabilities yet
 - Add high-resolution inspection
 - Monitor on-going effort with best preparation methods
- Less resources, stretch timeline to 2012
- International 'proof-of-principle' module
- Next:
 - FNAL Meeting 21-25th of April

Replan of ILC-SCRF R&D

updated, March 4, 2008

• TDP1 by 2010:

- S0: achieve 35 MV/m with 9-cell cavities at the yield 50 % under well defined processing-base,
- S1-Global: achieve <31.5 MV/m> with cryomodule-assembly
 - with global cooperation (for example, 4-AS, 2-US, 2-EU).
 - Note: the S1 achievable also, if 3 Tesla-type cavities added to the existing 5 cavities in CM2 at Fermilab.
- Cryomodule design: establish "plug-compatible interface and design"

TDP2-by 2012:

- S0: achieve 35 MV/m with 9-cell cavities at the yield 90 % under well defined processing-base.
- S1: achieve <31.5 MV/m> with full cavity-assembly (similarly processed) in single cryomodule, CM3 or CM4 (at Fermilab, US)
- S2: achieved <31.5 MV/m> with 3 cryomodule assembly to be powered by 1 RF unit, and with beam acceleration, in STF-2 at KEK.
- Industrialization: Learn from XFEL, & Cooperation with Project-X

Global Plan proposed

		CY	08		CY10	0		CY12
EDR TDP1			TDP-II					
S0:	30							35
Cavity Gradient (MV/m)								(>90%)
KEK-STF-0.5a: 1 Tesla-like								
KEK-STF-0.5b: 1 LL								
KEK-STF1: 4 cavities								
S1-Global (AS-US-EU)			CM (4 _{AS} +2 _{US} +2 _{EU})					
1 CM (4+2+2 cavities)				<31.5 MV/m>				
S2 & STF2: One RF unit & 3 CM with beam		des	ign	Fabrication in industries		Assemb at STF	Assembled and test at STF	
S1-Fermilab/US		CM1		CM2	CM3	(Type-IV)	CM4	
ILC-CM-3 or -4								

Cryomodule Design with plug-compatible components

CM with modular sub-assemblies	Cost fraction
 Cavity unit (cavity + helium vessel + tuner) 	64%
Coupler	12%
Quad package (quad + corrector)	4%
- BPM	2%
Cold-mass (cold-piping)	x/19%
Vacuum vessel	y/19%

- Plug-compatible, Interface specifications (IS)
 - To be generally agreed at Fermilab meeting, in April, 2008
- Plug-compatible IS enables parallel development, afterwards, during the TDP phases,