Optimal Q_L and P_k Settings for all Beam Currents

J. Branlard, B.E. Chase, S. Nagaitsev, O. Nezhevenko, J.S. Reid AD/RF dept. FNAL

Problem Statement

Different cavities within a cryomodule will have different quenching gradients and will operate at different gradients.

Assuming a certain gradient spread, we want to :

- Have a constant vector sum gradient
- Maintain that gradient for a 1 ms flat top
- Operate from 0 to full beam current

Fermilab

This study has been performed with a nominal gradient of 28 MV/m and a nominal current of 9 mA.

The typical gradient spread considered here is 13 cavities ranging from 22 MV/m to 34 MV/m

Problem Statement (cont'd)

3 knobs:

- LLRF (intrapulse)
 - cavity power coupler (interpulse)
 - waveguide power coupler (once)

Assume we can adjust both $Q_L (\approx Q_e)$ and P_k for each cavity.

🛟 Fermilab

1st approach: individual Q_L , individual P_k

SLAC: "RF distribution optimization in the main linac of the ILC" K.Bane, C.Adolphsen, C.Nantista (PAC07)

‡ Fermilab

2^{nd} approach: individual $P_{k'}$ same Q_{L} (optimized for no beam)

DESY: "XFEL waveguide distribution and more", V. Katalev

- Same Q_L for all cavities (Q_L=3 x 10⁶) ACC6 : [30.48 31.59 29.41 28.91 18.32 18.84 23.04 22.80] MV/m Ibo = 5 mA
- Adjust power to flatten individual gradient without beam

‡ Fermilab

This approach: individual P_{k} , same Q_{L} (optimized for beam)

For a given cavity maximum gradient distribution, find optimal Q_L (maximum V_S) 13 cavities [22 – 34] MV/m

quench gradients - 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 33, 34 MV/m

‡ Fermilab

Impact of the cavity gradient distribution for a fixed 22-34 MV/m spread

9

Increasing the number of cavities (Ncav) for a range of quenching gradients

10

Impact of the cavity gradient spread for a uniform distribution

Approach comparison

Reflected power

Lowest cavity (22 MV/m) → maximum reflected power

🗱 Fermilab

Approach comparison - Conclusion

Approach	indiv. Q _L , indiv. P _K	same Q_L , indiv. P_K
Maximum gradient	28 MV/m	27.1 MV/m
P _{FWD} (total 13 cavities)	3.7 MW	3.3 MW
P _{REF} (total 13 cavities)	270 kW	20 kW
Operate at any beam current	No	Yes
Operate without tunable coupler	No	Yes

for a uniform gradient spread ranging from 22 MV/m to 34 MV/m

🛟 Fermilab

Conclusions

With the current approach:

🔁 Fermilab

- + We can maintain a constant vector sum for the entire flat top duration and for any beam current
- We operate at a gradient below the maximum gradient (nom. ~ -2%)
- + The reflected power during beam is reduced by a factor of 14
- + All cavities operate with the same loaded Q and will therefore all have a similar control response