Summary of Relative RF Distribution Costs with Gradient Considerations (Work in Progress)

Chris Adolphsen SLAC

Cost of Power and Qext Control

- RDR Linac Cost with Labor
$-3.89 \mathrm{~B} \$+59 \%$ of 14 khr * $140 \mathrm{k} \$ / \mathrm{hr}=5.0 \mathrm{~B} \$$
- So 1\% gradient = $50 \mathrm{M} \$$
- RDR TTF3 Coupler Cost Including Processing
- RDR (DESY) Estimate $=11.5 \mathrm{k} \$(9.5 \mathrm{kEuro}$ with $1.2 \mathrm{E} / \$$)
- FNAL Estimate $=13.6+2.6=16.2 \mathrm{k} \$$ (13.4 kEuro)
- LAL ILC goal = $28 \mathrm{k} \mathrm{\$}$ (14 kEuro for parts * 1.2 / .6)
- Cost of Qext Control
- Number of Main Linac Couplers $=14560$
- Cost savings with fixed Qext = 11\% (Serge's worst case)
- So Qext cost with RDR Estimate $=18 \mathrm{M} \$$
- Cost of Power Control
$-\mathrm{T}+\mathrm{WG}=10.3 \mathrm{k} \$$ * $14560 / 3.1$ (RDR discount) $=48 \mathrm{M} \$$

Configuration With Fixed Cavity Power (BCD)

Configuration With Cavity Pair Power Tailoring

Requires 8 3dB hybrids, 4 waveguide $T \mathrm{~s}$, and pairing of like cavities.
Configuration With Individual Cavity Power Tailoring

Requires circulators, 83 dB hybrids, and 8 waveguide $T \mathrm{~s}$.

Fixed vs. Variable Coupling Cost

Hybrid	$\$ 6,650$	$\$ 6,650$
H-plane bend	$2 \times \$ 1,236$	$\$ 2,472$
Spool	$\$ 700 ?$	$\$ 700$
Gaskets	$6 \times \$ 78.95$	$\$ 474$

NOTE: Hybrids and bends (to accommodate various hybrid lengths and output phases) of various designs above, but all identical below, which can affect prices.

Hybrid	$\$ 6,650$	$\$ 6,650$
Magic Tee	$\$ 5000 ?$	$\$ 5,000 ?$
H U-bends	$2 \times \$ 2,000 ?$	$\$ 4,000$
H-plane bend	$\$ 1,236$	$\$ 1,236$
Spacers	$4 \times \$ 400 ?$	$\$ 1,600$
Spools	$2 \times \$ 500 ?$	$\$ 1,000$
Gaskets	$14 \times \$ 78.95$	$\$ 1,105$
		$\$ 20,591$

Cost of Variability: $\sim \$ 10,295 /$ cavity ?

Cost Comparisons for Single Feed Systems

(Assumes 22-34 MV/m Flat Gradient Distribution)

Adjustability	Cost of P+Q	Loss of Grad	Cost Of Grad	Net (M\$)
P + Q	$48+18$	0	0	66
P, No Q Narrow G*	48	1.5%	75	123
No P, Q Baseline	18	2.7%	135	153
P+Q but Q common	$48+18$	3.0%	150	216

* Assumes Gaussian (4.5% sigma) gradient spread (no sorting), full wall plug power if run at lower currents and increased cooling water overhead.

Check of J. Branlard et al estimate of a 3.2\% gradient loss with P adjustment but common Q:
 Karl Bane computes 2.8 +/- .03\%

Baseline RF Distribution System

Fixed Tap-offs
Isolators

Alternative RF Distribution System

Variable Tap-offs (VTOs)
3 dB Hybrids

Gradient Optimization with and Without VTOs and Circulators

Consider uniform distribution of gradient limits $\left(G_{\text {lim }}\right)_{i}$ from 22 to $34 \mathrm{MV} / \mathrm{m}$ in a 26 cavity rf unit - adjust cavity Q's and/not cavity power (P) to maximize overall gradient while keeping gradient uniform ($<1 \mathrm{e}-3 \mathrm{rms}$) during bunch train

Optimized $1-\langle G\rangle /\left\langle G_{l i m}\right\rangle$; results for 100 seeds

Case	Not Sorted [\%]	Sorted [\%]
Individual P's and Q's (VTO and Circ)	0.0	0.0
1P, individual Q's (Circ but no VTO) P's in pairs, Q's in pairs (VTO but no Circ)	2.7 ± 0.4	2.7 ± 0.4
1(Q's in pairs (no VTO, no Circ) G_{i} set to lowest Glim (no VTO, no Circ)	7.2 ± 1.4	0.8 ± 0.2

Cost Estimates for Various 8Cavity Distribution System in ‘Small' Quantities

Use Results to Gauge Whether Eliminating Isolators Is Cost Effective

Parts Cost for Baseline RF Distribution

No Power Adjustability, includes Phase Shifters Instead of 3 Stub Tuners

Hybrids (pressurizable)	$8 \times \$ 6,650$	$\$ 53,200$
Isolators	$8 \times \$ 6,500$	$\$ 52,000$
Pressure windows	$8 \times \$ 5,663.57$	$\$ 45,309$
Support frame	$4 \times \$ 7,500$	$\$ 30,000$
Phase shifters	$8 \times \$ 3,300$	$\$ 26,400$
H-plane bends	$15 \times \$ 1,236.48$	$\$ 18,547$
Loads (1 MW)	$8 \times \$ 2,000$	$\$ 16,000$
Directional couplers	$10 \times \$ 1,150(\$ 1,205 M E G A)$	$\$ 11,500$
Gaskets	$110 \times \$ 78.95$	$\$ 8,685$
E-plane U bends (atm.)	$8 \times \$ 800 ?$	$\$ 6,400$
Flex guide (atm.)	$8 \times \$ 588$	$\$ 4,704$
Load (5 MW)	$1 \times \$ 4,000$	$\$ 4,000$
Spools (press.)	$7 \times \$ 371$	$\$ 2,597$
Pressure section+inlet flange	$1 \times \$ 1,000$	$\$ 1,000$
Nuts $\& b o l t s$	$4 \times \$ 250$	$\$ 1,000$
Flex guide(press.)	$1 \times \$ 756.75$	$\$ 757$
TOTAL		$\$ 282,100$

Parts Cost For ACD System with Cavities Fed in Pairs

Includes Power Adjustability (VTOs) and Phase Shifters but no Isolators Same as First Version for FNAL expect without Isolators

VTO's	$4 \times \$ 16,900$	$\$ 67,600$
Support frame	$4 \times \$ 7,500$	$\$ 30,000$
Hybrids	$4 \times \$ 6,650(\$ 4,600 \mathrm{MEGA})$	$\$ 26,600$
Phase shifters	$8 \times \$ 3,300$	$\$ 26,400$
E-plane bends (cust.)	$26 \times \$ 900$	$\$ 23,400$
Pressure windows	$4 \times \$ 5,663.57$	$\$ 22,654$
Loads (1 MW)	$8 \times \$ 2,000$	$\$ 16,000$
Directional couplers	$10 \times \$ 1,150(\$ 1,205 \mathrm{MEGA})$	$\$ 11,500$
Gaskets	$112 \times \$ 78.95$	$\$ 8,842$
E-plane bends (6" $\times 6 ")$	$6 \times \$ 841.12$	$\$ 5,047$
H-plane bends	$4 \times \$ 1,236.48$	$\$ 4,946$
Flex guide (atm.)	$8 \times \$ 588$	$\$ 4,704$
Load (5 MW)	$1 \times \$ 4,000$	$\$ 4,000$
Flex guide(press.)	$4 \times \$ 756.75$	$\$ 3,027$
~8" spools	$8 \times \$ 371$	$\$ 2,968$
Pressure section+inlet flange	$1 \times \$ 1,000$	$\$ 1,000$
Nuts\&bolts	$4 \times \$ 250$	$\$ 1,000$
TOTAL		$\$ 259,688$

Economy ACD System with Cavities Fed in Pairs

Eliminate Phase Shifters, Use Simpler Parts

VTO's
Hybrids (atm.)
Support frame
Phase Spacers
E-plane bends (cust.)
Loads (1 MW)
Directional couplers
Pressure windows
Gaskets
E-plane bends (6"×6")
H-plane bends
H-plane bends (atm., cust.)
E-plane U bends (atm.)
Flex guide (atm.)
Load (5 MW)
Flex guide(press.)
$\sim 8 "$ spools (atm.)
Pressure section+inlet flange
Nuts\&bolts
TOTAL

$4 \times \$ 16,900$	$\$ 67,600$
$4 \times \$ 6,000 ?$	$\$ 24,000$
$4 \times \$ 7,500$	$\$ 30,000$
$16 \times \$ 400 ?$	$\$ 6,400$
$6 \times \$ 900$	$\$ 5,400$
$8 \times \$ 2,000$	$\$ 16,000$
$10 \times \$ 1,150(\$ 1,205 \mathrm{MEGA})$	$\$ 11,500$
$4 \times \$ 2,500($ SLAC block $)$	$\$ 10,000$
$112 \times \$ 78.95$	$\$ 8,842$
$6 \times \$ 841.12$	$\$ 5,047$
$4 \times \$ 1,236.48$	$\$ 4,946$
$8 \times \$ 747$	$\$ 5,976$
$8 \times \$ 800 ?$	$\$ 6,400$
$8 \times \$ 588$	$\$ 4,704$
$1 \times \$ 4,000$	$\$ 4,000$
$2 \times \$ 756.75$	$\$ 1,514$
$8 \times \$ 250 ?$	$\$ 2,000$
$1 \times \$ 1,000$	$\$ 1,000$
$4 \times \$ 250$	$\$ 1,000$

VTO or Tee/Spacers/Hybrid

Parts Cost for RF Distribution w/ Variable Coupling to Each Cavity - Economy Version

Hybrids (pressurizable)
Magic Tee's
H-plane U bends (press.)
Coupling Spacers
Spools (press.)
H-plane bends
Isolators
Support frame
Phase Spacers
Loads (1 MW)
Directional couplers
Pressure windows
Gaskets
E-plane U bends (atm.)
Flex guide (atm.)
Load (5 MW)
Flex guide(press.)
Pressure section+inlet flange
Nuts\&bolts
TOTAL

$8 \times \$ 6,650$	$\$ 53,200$
$8 \times \$ 5,000 ?$	$\$ 40,000$
$16 \times \$ 2,000 ?$	$\$ 32,000$
$32 \times \$ 400 ?$	$\$ 12,800$
$24 \times \$ 400 ?$	$\$ 9,600$
$7 \times \$ 1,236.48$	$\$ 8,655$
$8 \times \$ 6,500$	$\$ 52,000$
$4 \times \$ 7,500$	$\$ 30,000$
$16 \times \$ 400 ?$	$\$ 6,400$
$8 \times \$ 2,000$	$\$ 16,000$
$10 \times \$ 1,150(\$ 1,205 M E G A)$	$\$ 11,500$
$8 \times \$ 2,500($ SLAC block $)$	$\$ 20,000$
$153 \times \$ 78.95$	$\$ 12,709$
$8 \times \$ 800 ?$	$\$ 6,400$
$8 \times \$ 588$	$\$ 4,704$
$1 \times \$ 4,000$	$\$ 4,000$
$1 \times \$ 756.75$	$\$ 757$
$1 \times \$ 1,000$	$\$ 1,000$
$4 \times \$ 250$	$\$ 1,000$
	$\$ 322,095$

Summary of RF Dist Costs

(For RDR, 560 rf units at $296 \mathrm{k} \mathrm{\$}$ per system = $166 \mathrm{M} \$$)

Configuration	8-Cavity Cost (k\$) (small quantities)	Cost (M\$) Differences Scaled to ILC	Cost (M\$) due to Gradient Loss*	Net Cost Change (M\$)
Baseline	282	-	135	135
ACD Two Feed	260	-13	40	27
ACD Two Feed Economy Version	216	-39	40	1
ACD One Feed Economy Version	322	+24	0	24

* For ACD Two Feed case, assume 0.8% grad loss if 26 cavities sorted in pairs by grad

