MLI Update

Chris Adolphsen SLAC

Quadrupole Package

Quad Field and Position Requirements

- Installation Requirements
 - Local alignment to the cryomodule axis covered in N. Ohuchi specs
 - Long range (10 m to 10 km) Kubo working on specs
- Fast Motion (Vibration)
 - Require uncorrelated vertical motion > ~ 1 Hz to be < 100 nm
 - Many measurements being done data show spec can be met
- Slow Motion (Drift)
 - For dispersion control, want quad to stay stable relative to it neighbors at few micron level, day to day
 - Although slow ground motion is large, it is correlated on over long distance range which makes its net effect small.
 - Also sensitive to cryo shielding temperature changes and tunnel temperature changes.
- Change of Field Center with Change in Field Strength
 - For quad shunting technique to be effective in finding the alignment between the quad and the attached bpm, quad center must not move by more than a few microns with a 20% change in field strength
 - Close to acquiring data on ILC prototype at SLAC
 - Vladimir will review efforts at FNAL (CIEMAT busy with XFEL Magnet Development)

Dewar Test at DESY

CIEMAT Cos(2Φ) SC Quad (~ 0.7 m long)

In Warm-Bore Cryostat at SLAC

Kashikhin: Building Linac Quad and Corrector Prototypes at FNAL

Cold mass: Length 680 mm

Outer Diameter 280 mm

RF BPMs

Require

- 1 micron level single bunch resolution
- Ability to resolve bunch-by-bunch positions with 300 ns (150 ns ?) bunch spacing
- Cleanable design so does not contaminate cavities
- Readout system that is stable to 1 um on a time scale of a day for a fixed beam offset up to 1 mm.
- Linac Prototypes
 - SACLAY L-Band version for XFEL/ILC
 - FNAL L-Band version for NML/ILC
 - SLAC half aperture S-Band version for ILC
- No L-band cavities have yet met ILC requirements
- Manfred will review FNAL and SACLAY progress

Building Prototype µm-Resolution, 1.5 GHz, Cavity BPM at FNAL

dapnia

Re-entrant Cavity BPM

• It is arranged around the beam tube and forms a coaxial line which is short circuited at one end.

• The cavity is fabricated with stainless steel as compact as possible :

170 mm length (minimized to satisfy the constraints imposed by the cryomodule)

SLAC Half-Aperture BPM Prototype

(0.5 micron resolution, 1.4e10 electrons, Q of 500 for clean bunch separation)

Coupler Wars – Will Ask Cryo Group to Provide Relative Heat Loss Estimates

		Cold Window	Bias-able	Variable Qext	Cold Coax Dia.	# Fabricated
	TTF-3	Cylindrical	yes	yes	40 mm	62
	KEK2	Capacitive Disk	no	no	40 mm	3
	KEK1	Tristan Disk	no	no	60 mm	4
	LAL TW60	Disk	possible	possible	62 mm	2
	LAL TTF5	Cylindrical	possible	possible	62 mm	2

Main Linac BD Example – Continued Study of DFS Effectiveness – Paul will summarize recent activities

