Processing & Testing of ICHIRO5

New Results from Jefferson Lab for ILC SO High Gradient R&D

Rong-Li Geng SRF Institute, Jefferson Lab

ILC SO cavities studied at JLab & best gradient

JLab SO High Gradient Milestones

ICHIRO5-1st cross-region exchange SO cavity

JLab/KEK/FNAL

ICHIRO5 baseline test at JLab

ICHIRO5 processing and testing at KEK

CBP(100mm) + CP (10mm) + AN (750 °C X 3hr)

EP 40 mm: 18 MV/m, FE limited

+ re-cleaning: 8 MV/m, FE limited

+ 20 mm + 3 mm: 22 MV/m, FE limited

RF test	treatment	result	limit
1	US cleaning + HPR, RF test in D7	30 MV/m	LHe, loose antenna
2	Warm-up to RT, retest in D8	21 MV/m	FE, stable turn on hysteresis Q(Eacc)
3	Warm-up to RT, re-test in D7	19 MV/m	FE, stable turn on Hysteresis Q(Eacc)
4	EP 20 um + EP 10um + US + HPR +bake	36 MV/m	FE, emitter turn on then explosive event
5	US cleaning (2% micro-90) + HPR	35 MV/m	Quench, No X-ray
6	EP 20 um + EP 20 um + US (2%) + HPR + HPR + bake	28/16 MV/m	FE induced quench Strong emitter turn on

Final RF test at KEK

Initial RF test at JLab

ICHIRO5 RF test after JLab EP

RF test	treatment	result	limit
1	US cleaning + HPR, RF test in D7	30 MV/m	LHe, loose antenna
2	Warm-up to RT, retest in D8	21 MV/m	FE, stable turn on hysteresis Q(Eacc)
3	Warm-up to RT, re-test in D7	19 MV/m	FE, stable turn on Hysteresis Q(Eacc)
4	EP 20 um + EP 10um + US + HPR +bake	36 MV/m	FE, emitter turn on then explosive event
5	US cleaning (2% micro-90) + HPR	35 MV/m	Quench, No X-ray
6	EP 20 um + EP 20 um + US (2%) + HPR + HPR + bake	28/16 MV/m	FE induced quench Strong emitter turn on

ICHIRO5 reached 36 MV/m with strong FE After re-processing: 35 MV/m with no FE

R.L. Geng

SCRF Meeting at FNAL April 21 - 25, 2008

ICHIRO5 RF test after more JLab EP

RF test	treatment	result	limit
1	US cleaning + HPR, RF test in D7	30 MV/m	LHe, loose antenna
2	Warm-up to RT, retest in D8	21 MV/m	FE, stable turn on hysteresis Q(Eacc)
3	Warm-up to RT, re-test in D7	19 MV/m	FE, stable turn on Hysteresis Q(Eacc)
4	EP 20 um + EP 10um + US + HPR +bake	36 MV/m	FE, emitter turn on then explosive event
5	US cleaning (2% micro-90) + HPR	35 MV/m	Quench, No X-ray
6	EP 20 um + EP 20 um + US (2%) + HPR + HPR + bake	28/16 MV/m	FE induced quench Strong emitter turn on

Last test: Strong FE turn on at 28 MV/m

Similar behavior during 3rd test at KEK & 2nd and 3rd test at JLab

Long-distance microscope (Questar) RF surface inspection

AES4 has similar behavior

AES4 4th Half-Cell from Long Beam Tube

AES4 2nd Half Cell from Long Beam Tube End

3 defects (~ 100 μm), with 2 shown, at radial location of stiffening ring

Blowup of one defect showing crater type details

AES4 defect locations consistent with pass-band measurements

2 X cell thermometry test done on April 18, data under analysis

More in later talk by Gigi Ciovati

Concluding Remarks

- A strong JLab/KEK/FNAL collaborative effort.
- ICHIRO5 reached ILC goal gradient and Q.
- Re-processing by ultrasonic cleaning + HPR has shown remarkable success in reducing FE.
- The recurring FE turn-on may be associated with iris defect.
- A similarly behaving cavity AES4 under study with combined pass-band measurements, 2X cell thermometry, and long-distance microscope.

Concluding Remarks (cont.)

- JLab's significant 9-cell cavity processing and testing capability (30 EP/VT cycles per year) enhanced by added capability for cavity thermometry and high-resolution RF surface inspection.
- Basic EP studies, flat sample studies & single-cell EP program at JLab remain necessary components.
- ILC high-gradient R&D directly benefits other JLab projects (such as new SNS spare cavity processing).
 JLab has a strong gradient R&D portfolio for FY09 and beyond (more in later talk by Charlie Reece).

Acknowledgement

- Japan-US collaboration fund.
- KEK: Fumio Furuta, Kenji Saito, Hitoshi Hayano Nobu Toge, Kaoru Yokoya.
- FNAL: Damon Bice, Mark Champion
- JLab: Curtis Crawford, Pete Kushnick, Byron Golden. Charlie Reece, Bob Rimmer.

SCRF Meeting at FNAL April 21 - 25, 2008

• GDE: Akira Yamamoto, Marc Ross.

Backup Slides

Basic EP studies to address effect of water addition/subtraction

Hui Tian, Michael Kelley, Charlie Reece

Typical RF surface of ACCEL#8 (32 MV/m) viewed by Questar

Typical RF surface of TE1AES001 (28 MV/m, BCP etched only) viewed by Questar

SCRF Meeting at FNAL April 21 - 25, 2008

Eacc (MV/M)